试题
题目:
将一张长方形纸片按如图所示的方式折叠,EM,MF为折痕(如图所示),则∠EMF的度数为( )
A.95°
B.90°
C.75°
D.60°
答案
B
解:∵四边形C′MFD′是四边形CMFD翻折而成,
∴∠CMF=∠C′MF,∠BME=∠EMC′,
∵∠CMF+∠C′MF+∠BME+∠EMC′=180°,
∴∠EMF=∠EMC′+∠EMC′=
1
2
×180°=90°.
故选B.
考点梳理
考点
分析
点评
专题
翻折变换(折叠问题).
根据翻折不变性可知∠CMF=∠C′MF,∠BME=∠EMC′,再根据∠CMF+∠C′MF+∠BME+∠EMC′=180°即可求出答案.
本题考查的是图形翻折变换的性质,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.
探究型.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
如图a,ABCD是一矩形纸片,AB=6cm,AD=8cm,E是AD上一点,且AE=6cm.操作:(1)将AB向AE折过去,使AB与AE重合,得折痕AF,如图b;(2)将△AFB以BF为折痕向右折过去,得图c.则△GFC的面积是
2
2
cm
2
.
如图,将△ABC沿直线AC翻折得到△AB′C,若∠BAC=25°,则∠AB′B=
65
65
度.
如图,先将一平行四边形纸片ABCD沿AE,EF折叠,使点E,B′,C′在同一直线上,再将折叠的纸片沿EG折叠,使AE落在EF上,则∠AEG=
45
45
度.
如图,在△ABC中,∠B=90°.AB=3,BC=5.将△ABC折叠,使点C与点A重合,拆痕为DE,则△ABE的周长为
8
8
.