试题
题目:
如图,Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,将△ABC折叠,使点C与点A重合,折痕为DE,求CE的长.
答案
解:∵AB=3cm,AC=5cm,
∴根据勾股定理得BC=4cm,
由折叠的性质知,AE=CE,
设AE=CE=x,
则BE=(4-x)
在Rt△ABE中,
AB
2
+BE
2
=AE
2
即:3
2
+(4-x)
2
=x
2
解得:x=
25
8
.
所以CE的长为
25
8
cm.
解:∵AB=3cm,AC=5cm,
∴根据勾股定理得BC=4cm,
由折叠的性质知,AE=CE,
设AE=CE=x,
则BE=(4-x)
在Rt△ABE中,
AB
2
+BE
2
=AE
2
即:3
2
+(4-x)
2
=x
2
解得:x=
25
8
.
所以CE的长为
25
8
cm.
考点梳理
考点
分析
点评
翻折变换(折叠问题).
根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
本题考查了翻折变换的知识,利用了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
如图a,ABCD是一矩形纸片,AB=6cm,AD=8cm,E是AD上一点,且AE=6cm.操作:(1)将AB向AE折过去,使AB与AE重合,得折痕AF,如图b;(2)将△AFB以BF为折痕向右折过去,得图c.则△GFC的面积是
2
2
cm
2
.
如图,将△ABC沿直线AC翻折得到△AB′C,若∠BAC=25°,则∠AB′B=
65
65
度.
如图,先将一平行四边形纸片ABCD沿AE,EF折叠,使点E,B′,C′在同一直线上,再将折叠的纸片沿EG折叠,使AE落在EF上,则∠AEG=
45
45
度.
如图,在△ABC中,∠B=90°.AB=3,BC=5.将△ABC折叠,使点C与点A重合,拆痕为DE,则△ABE的周长为
8
8
.