试题
题目:
如图(1),将一张正六边形纸沿虚线对折折3次,得到一个多层的60°角形纸,用剪刀在折叠好的纸上随意剪出一条线,如图(2).
(1)猜一猜,将纸打开后,你会得到怎样的图形?
(2)这个图形有几条对称轴?
(3)如果想得到一个含有5条对称轴的图形,你应取什么形状的纸?应如何折叠?
答案
解:(1)轴对称图形.
(2)这个图形至少有3条对称轴.
(3)取一个正十边形的纸,沿它通过中心的五条对角线折叠五次,
得到一个多层的36°角形纸,用剪刀在叠好的纸上任意剪出一条线,
打开即可得到一个至少含有5条对称轴的轴对称图形.
解:(1)轴对称图形.
(2)这个图形至少有3条对称轴.
(3)取一个正十边形的纸,沿它通过中心的五条对角线折叠五次,
得到一个多层的36°角形纸,用剪刀在叠好的纸上任意剪出一条线,
打开即可得到一个至少含有5条对称轴的轴对称图形.
考点梳理
考点
分析
点评
专题
翻折变换(折叠问题);轴对称图形;剪纸问题.
可动手进行操作,得到图形进行展开,观察后可得答案(1),(2);由此可得规律,要想得到一个含有5条对称轴的图形,可去一个正十边形进行折叠即可.
本题考查了翻折变换、轴对称图形及剪纸问题;动手操作是正确解答此类问题的很好的方法,做题时注意应用.
几何图形问题.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
如图a,ABCD是一矩形纸片,AB=6cm,AD=8cm,E是AD上一点,且AE=6cm.操作:(1)将AB向AE折过去,使AB与AE重合,得折痕AF,如图b;(2)将△AFB以BF为折痕向右折过去,得图c.则△GFC的面积是
2
2
cm
2
.
如图,将△ABC沿直线AC翻折得到△AB′C,若∠BAC=25°,则∠AB′B=
65
65
度.
如图,先将一平行四边形纸片ABCD沿AE,EF折叠,使点E,B′,C′在同一直线上,再将折叠的纸片沿EG折叠,使AE落在EF上,则∠AEG=
45
45
度.
如图,在△ABC中,∠B=90°.AB=3,BC=5.将△ABC折叠,使点C与点A重合,拆痕为DE,则△ABE的周长为
8
8
.