试题
题目:
如图所示的三角形纸片中∠B=90°,AC=13,BC=5.现将纸片进行折叠,使得顶点D落在AC边上,折痕为AE.则BE的长为( )
A.2.4
B.2.5
C.2.8
D.3
答案
A
解:∵∠B=90°,AC=13,BC=5,
∴AB=
A
C
2
-B
C
2
=12,
设BE=x,
由折叠的性质可得:CD=AC-AD=13-12=1,DE=BE=x,∠ADE=∠B=90°,
∴EC=BC-BE=5-x,
在Rt△DEC中,EC
2
=CD
2
+DE
2
,
∴(5-x)
2
=1+x
2
,
解得:x=2.4,
∴BE=2.4.
故选A.
考点梳理
考点
分析
点评
翻折变换(折叠问题).
由∠B=90°,AC=13,BC=5,可求得AB的长,设BE=x,由折叠的性质可得:△DEC是直角三角形,ED=BE=x,EC=5-x,CD=1,然后由勾股定理求得BE的长.
此题考查了折叠的性质以及勾股定理.此题难度适中,注意掌握折叠前后图形的对应关系,注意数形结合思想与方程思想的应用.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
如图a,ABCD是一矩形纸片,AB=6cm,AD=8cm,E是AD上一点,且AE=6cm.操作:(1)将AB向AE折过去,使AB与AE重合,得折痕AF,如图b;(2)将△AFB以BF为折痕向右折过去,得图c.则△GFC的面积是
2
2
cm
2
.
如图,将△ABC沿直线AC翻折得到△AB′C,若∠BAC=25°,则∠AB′B=
65
65
度.
如图,先将一平行四边形纸片ABCD沿AE,EF折叠,使点E,B′,C′在同一直线上,再将折叠的纸片沿EG折叠,使AE落在EF上,则∠AEG=
45
45
度.
如图,在△ABC中,∠B=90°.AB=3,BC=5.将△ABC折叠,使点C与点A重合,拆痕为DE,则△ABE的周长为
8
8
.