试题

题目:
如图,将一张三角形纸片ABC折叠,使点A落在BC边上,折痕EF∥BC,得到△EFG;再继续将纸片沿△BEG的对称轴EM折叠,依照上述做法,再将△CFG折叠,最终得到矩形EMNF,折叠后的△EMG和△FNG的面积分别为1和2,则△ABC的面积为(  )
青果学院



答案
C
解:根据翻折不变性,可得△EBM≌△EGM,△FCN≌△FGN,△AEF≌△GEF,
易得S△EMG+S△FNG=S△EFG
则S△ABC=4S△EGF=4×(1+2)=12.
考点梳理
翻折变换(折叠问题).
根据翻折不变性,即可得到多组三角形全等:△EBM≌△EGM,△FCN≌△FGN,△AEF≌△GEF;根据同底等高的三角形全等,得到S△EMG+S△FNG=S△EFG,然后解答即可.
本题考查了翻折变换,抓住翻折不变性是解题的关键.
计算题;压轴题.
找相似题