试题
题目:
如图,有一个直角三角形纸片,两直角边AC=18cm,BC=24cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,你能求出BD的长吗?
答案
解:由勾股定理得,AB=30.
由折叠的性质知,AE=AC=18,DE=CD,∠AED=∠C=90°.
∴BE=AB-AE=30-18=12,
在Rt△BDE中,由勾股定理得,
DE
2
+BE
2
=BD
2
即(24-BD)
2
+12
2
=BD
2
,
解得:BD=15cm.
解:由勾股定理得,AB=30.
由折叠的性质知,AE=AC=18,DE=CD,∠AED=∠C=90°.
∴BE=AB-AE=30-18=12,
在Rt△BDE中,由勾股定理得,
DE
2
+BE
2
=BD
2
即(24-BD)
2
+12
2
=BD
2
,
解得:BD=15cm.
考点梳理
考点
分析
点评
专题
翻折变换(折叠问题).
由折叠的性质知CD=DE,AC=AE.根据题意在Rt△BDE中运用勾股定理求BD.
本题考查的知识点:1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、勾股定理求解.
计算题.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
如图a,ABCD是一矩形纸片,AB=6cm,AD=8cm,E是AD上一点,且AE=6cm.操作:(1)将AB向AE折过去,使AB与AE重合,得折痕AF,如图b;(2)将△AFB以BF为折痕向右折过去,得图c.则△GFC的面积是
2
2
cm
2
.
如图,将△ABC沿直线AC翻折得到△AB′C,若∠BAC=25°,则∠AB′B=
65
65
度.
如图,先将一平行四边形纸片ABCD沿AE,EF折叠,使点E,B′,C′在同一直线上,再将折叠的纸片沿EG折叠,使AE落在EF上,则∠AEG=
45
45
度.
如图,在△ABC中,∠B=90°.AB=3,BC=5.将△ABC折叠,使点C与点A重合,拆痕为DE,则△ABE的周长为
8
8
.