试题
题目:
如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.
(1)试找出一个与△AED全等的三角形,并加以证明.
(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,PG+PH的值会变化吗?若变化,请说明理由; 若不变化,请求出这个值.
答案
解:(1)△CEB′≌△AED;
证明:∵四边形ABCD是矩形,
∴AB∥CD,
∴∠ECA=∠CAB,∠D=∠B=90°,
由折叠的性质得:∠EAC=∠CAB,∠B′=∠B,
∴∠EAC=∠ECA,∠B′=∠D,
∴EA=EC,
在△AED和△CEB′中,
∵
∠D=∠B′
∠DEA=∠B′EC
EA=EC
,
∴△CEB′≌△AED(AAS);
(2)PG+PH的值不变.
∵△CEB′≌△AED,
∴EB′=DE=3,
∵AB′=AB=8,
∴AE=AB′-EB′=8-3=5,
在Rt△ADE中,AD=
AE
2
-DE
2
=4,
过点P作PK⊥AB于K,
∵∠B′AC=∠BAC,PG⊥AE,
∴PG=PK,
∵PH⊥CD,AB∥CD,
∴PH⊥AB,
∴H,P,K共线,
∵∠D=∠KHD=∠HKA=90°,
∴四边形ADHK是矩形,
∴HK=AD=4,
∴PG+PH=PK+PH=HK=4.
解:(1)△CEB′≌△AED;
证明:∵四边形ABCD是矩形,
∴AB∥CD,
∴∠ECA=∠CAB,∠D=∠B=90°,
由折叠的性质得:∠EAC=∠CAB,∠B′=∠B,
∴∠EAC=∠ECA,∠B′=∠D,
∴EA=EC,
在△AED和△CEB′中,
∵
∠D=∠B′
∠DEA=∠B′EC
EA=EC
,
∴△CEB′≌△AED(AAS);
(2)PG+PH的值不变.
∵△CEB′≌△AED,
∴EB′=DE=3,
∵AB′=AB=8,
∴AE=AB′-EB′=8-3=5,
在Rt△ADE中,AD=
AE
2
-DE
2
=4,
过点P作PK⊥AB于K,
∵∠B′AC=∠BAC,PG⊥AE,
∴PG=PK,
∵PH⊥CD,AB∥CD,
∴PH⊥AB,
∴H,P,K共线,
∵∠D=∠KHD=∠HKA=90°,
∴四边形ADHK是矩形,
∴HK=AD=4,
∴PG+PH=PK+PH=HK=4.
考点梳理
考点
分析
点评
翻折变换(折叠问题).
(1)由四边形ABCD是矩形与折叠的性质,易证得△EAC是等腰三角形,即EA=EC,然后由AAS即可证得△CEB′≌△AED;
(2)由△CEB′≌△AED,可得EB′=DE=3,又由AB=8,即可求得AE的长,然后在Rt△ADE中,利用勾股定理即可求得AD的长;再过点P作PK⊥AB于K,由角平分线的性质,可得PK=PG,易证得四边形ADHK是矩形,继而可求得答案.
此题考查了折叠的性质、矩形的性质、角平分线的性质、等腰三角形的判定与性质以及勾股定理等知识.此题难度较大,注意掌握折叠前后图形的对应关系,注意掌握辅助线的作法,注意数形结合思想的应用.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
如图a,ABCD是一矩形纸片,AB=6cm,AD=8cm,E是AD上一点,且AE=6cm.操作:(1)将AB向AE折过去,使AB与AE重合,得折痕AF,如图b;(2)将△AFB以BF为折痕向右折过去,得图c.则△GFC的面积是
2
2
cm
2
.
如图,将△ABC沿直线AC翻折得到△AB′C,若∠BAC=25°,则∠AB′B=
65
65
度.
如图,先将一平行四边形纸片ABCD沿AE,EF折叠,使点E,B′,C′在同一直线上,再将折叠的纸片沿EG折叠,使AE落在EF上,则∠AEG=
45
45
度.
如图,在△ABC中,∠B=90°.AB=3,BC=5.将△ABC折叠,使点C与点A重合,拆痕为DE,则△ABE的周长为
8
8
.