试题
题目:
将矩形ABCD沿对角线BD折叠,使C落在F处,BF交AD于E,求证:重合部分三角形BED是等腰三角形.
答案
证明:由折叠的性质可知∠EBD=∠CBD,
∵AD∥BC,
∴∠EDB=∠CBD,
∴∠EBD=∠EDB,
∴BE=ED,即△BED是等腰三角形.
证明:由折叠的性质可知∠EBD=∠CBD,
∵AD∥BC,
∴∠EDB=∠CBD,
∴∠EBD=∠EDB,
∴BE=ED,即△BED是等腰三角形.
考点梳理
考点
分析
点评
专题
翻折变换(折叠问题).
由轴对称的性质可知∠EBD=∠CBD,由AD∥BC可得∠EDB=∠CBD,等量代换得∠EBD=∠EDB.
本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.
证明题.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
如图a,ABCD是一矩形纸片,AB=6cm,AD=8cm,E是AD上一点,且AE=6cm.操作:(1)将AB向AE折过去,使AB与AE重合,得折痕AF,如图b;(2)将△AFB以BF为折痕向右折过去,得图c.则△GFC的面积是
2
2
cm
2
.
如图,将△ABC沿直线AC翻折得到△AB′C,若∠BAC=25°,则∠AB′B=
65
65
度.
如图,先将一平行四边形纸片ABCD沿AE,EF折叠,使点E,B′,C′在同一直线上,再将折叠的纸片沿EG折叠,使AE落在EF上,则∠AEG=
45
45
度.
如图,在△ABC中,∠B=90°.AB=3,BC=5.将△ABC折叠,使点C与点A重合,拆痕为DE,则△ABE的周长为
8
8
.