试题
题目:
如图,有一张直角三角形纸片,两直角边AC=6cm,BC=8cm,将△ABC折叠,使点B与点A重合,折痕为DE,求CD的长.
答案
解:由题意得DB=AD;
设CD=xcm,则
AD=DB=(8-x)cm,
∵∠C=90°,∴在Rt△ACD中,
根据勾股定理得:AD
2
-CD
2
=AC
2
,即(8-x)
2
-x
2
=36,
解得x=
7
4
;
即CD=
7
4
cm.
解:由题意得DB=AD;
设CD=xcm,则
AD=DB=(8-x)cm,
∵∠C=90°,∴在Rt△ACD中,
根据勾股定理得:AD
2
-CD
2
=AC
2
,即(8-x)
2
-x
2
=36,
解得x=
7
4
;
即CD=
7
4
cm.
考点梳理
考点
分析
点评
专题
翻折变换(折叠问题).
由翻折易得DB=AD,利用直角三角形ACD,勾股定理即可求得CD长.
翻折前后对应边相等,利用勾股定理求解即可.
计算题.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
如图a,ABCD是一矩形纸片,AB=6cm,AD=8cm,E是AD上一点,且AE=6cm.操作:(1)将AB向AE折过去,使AB与AE重合,得折痕AF,如图b;(2)将△AFB以BF为折痕向右折过去,得图c.则△GFC的面积是
2
2
cm
2
.
如图,将△ABC沿直线AC翻折得到△AB′C,若∠BAC=25°,则∠AB′B=
65
65
度.
如图,先将一平行四边形纸片ABCD沿AE,EF折叠,使点E,B′,C′在同一直线上,再将折叠的纸片沿EG折叠,使AE落在EF上,则∠AEG=
45
45
度.
如图,在△ABC中,∠B=90°.AB=3,BC=5.将△ABC折叠,使点C与点A重合,拆痕为DE,则△ABE的周长为
8
8
.