试题
题目:
如图,明明折叠一张长方形纸片,翻折AD,使点D落在BC边的点F处,量得AB=8cm,BC=10cm,则EC=( )
A.3
B.4
C.5
D.6
答案
A
解:∵△AFE是Rt△ADE翻折而成,
∴△ADE≌△AFE,
∴AD=AF=BC=10cm,DE=EF,
在Rt△ABF中,BF=
AF
2
-
AB
2
=
10
2
-
8
2
=6cm,
∴CF=BC-BF=10-6=4cm,
设CE=x,则EF=8-x,
在Rt△CEF中,
EF
2
=CE
2
+CF
2
,即(8-x)
2
=x
2
+4
2
,解得x=3cm.
故选A.
考点梳理
考点
分析
点评
专题
翻折变换(折叠问题).
先根据图形翻折变换的性质得出△ADE≌△AFE,进而可知AD=AF=BC=10cm,DE=EF,在Rt△ABF中利用勾股定理求出BF的长,进而可得出CF的长,设CE=x,在Rt△CEF中利用勾股定理即可求出x的值.
本题考查的是翻折变换的性质,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的性质是解答此题的关键.
探究型.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
如图a,ABCD是一矩形纸片,AB=6cm,AD=8cm,E是AD上一点,且AE=6cm.操作:(1)将AB向AE折过去,使AB与AE重合,得折痕AF,如图b;(2)将△AFB以BF为折痕向右折过去,得图c.则△GFC的面积是
2
2
cm
2
.
如图,将△ABC沿直线AC翻折得到△AB′C,若∠BAC=25°,则∠AB′B=
65
65
度.
如图,先将一平行四边形纸片ABCD沿AE,EF折叠,使点E,B′,C′在同一直线上,再将折叠的纸片沿EG折叠,使AE落在EF上,则∠AEG=
45
45
度.
如图,在△ABC中,∠B=90°.AB=3,BC=5.将△ABC折叠,使点C与点A重合,拆痕为DE,则△ABE的周长为
8
8
.