试题
题目:
如图所示,在矩形ABCD中,AB=16,BC=8,将矩形沿对角线AC折叠,点D落在E点处,且CE与AB交于点F,则AF的长度为( )
A.6
B.8
C.10
D.12
答案
C
解:∵在矩形ABCD中,AB=16,BC=8,
∴CD=AB=16,AB∥CD,∠B=90°,
∴∠DCA=∠BAC,
由折叠的性质可得:∠DCA=∠ECA,CE=CD=8,
∴∠BAC=∠ECA,
∴CF=AF,
设AF=x,则CF=x,BF=AB-AF=16-x,
在Rt△BCF中,CF
2
=BF
2
+BC
2
,
即x
2
=(16-x)
2
+8
2
,
解得:x=10,
∴AF=10.
故选C.
考点梳理
考点
分析
点评
翻折变换(折叠问题).
由在矩形ABCD中,AB=16,BC=8,根据矩形的性质,可得CD=AB=8,AB∥CD,∠B=90°,又由折叠的性质,易得△ACF是等腰三角形,即AF=CF,然后在Rt△BCF中,利用勾股定理,即可得方程x
2
=(16-x)
2
+8
2
,解此方程即可求得答案.
此题考查了折叠的性质、矩形的性质、等腰三角形的判定与性质以及勾股定理.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想与方程思想的应用.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
如图a,ABCD是一矩形纸片,AB=6cm,AD=8cm,E是AD上一点,且AE=6cm.操作:(1)将AB向AE折过去,使AB与AE重合,得折痕AF,如图b;(2)将△AFB以BF为折痕向右折过去,得图c.则△GFC的面积是
2
2
cm
2
.
如图,将△ABC沿直线AC翻折得到△AB′C,若∠BAC=25°,则∠AB′B=
65
65
度.
如图,先将一平行四边形纸片ABCD沿AE,EF折叠,使点E,B′,C′在同一直线上,再将折叠的纸片沿EG折叠,使AE落在EF上,则∠AEG=
45
45
度.
如图,在△ABC中,∠B=90°.AB=3,BC=5.将△ABC折叠,使点C与点A重合,拆痕为DE,则△ABE的周长为
8
8
.