试题
题目:
(2013·达州)如图,折叠矩形纸片ABCD,使B点落在AD上一点E处,折痕的两端点分别在AB、BC上(含端点),且AB=6,BC=10.设AE=x,则x的取值范围是
2≤x≤6
2≤x≤6
.
答案
2≤x≤6
解:设折痕为PQ,点P在AB边上,点Q在BC边上.
如图1,当点Q与点C重合时,根据翻折对称性可得
EC=BC=10,
在Rt△CDE中,CE
2
=CD
2
+ED
2
,
即10
2
=(10-AE)
2
+6
2
,
解得:AE=2,即x=2.
如图2,当点P与点A重合时,根据翻折对称性可得
AE=AB=6,即x=6;
所以,x的取值范围是2≤x≤6.
故答案是:2≤x≤6.
考点梳理
考点
分析
点评
专题
翻折变换(折叠问题).
设折痕为PQ,点P在AB边上,点Q在BC边上.分别利用当点P与点A重合时,以及当点Q与点C重合时,求出AE的极值进而得出答案.
本题考查的是翻折变换(折叠问题),勾股定理.注意利用翻折变换的性质得出对应线段之间的关系是解题关键.
压轴题.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
如图a,ABCD是一矩形纸片,AB=6cm,AD=8cm,E是AD上一点,且AE=6cm.操作:(1)将AB向AE折过去,使AB与AE重合,得折痕AF,如图b;(2)将△AFB以BF为折痕向右折过去,得图c.则△GFC的面积是
2
2
cm
2
.
如图,将△ABC沿直线AC翻折得到△AB′C,若∠BAC=25°,则∠AB′B=
65
65
度.
如图,先将一平行四边形纸片ABCD沿AE,EF折叠,使点E,B′,C′在同一直线上,再将折叠的纸片沿EG折叠,使AE落在EF上,则∠AEG=
45
45
度.
如图,在△ABC中,∠B=90°.AB=3,BC=5.将△ABC折叠,使点C与点A重合,拆痕为DE,则△ABE的周长为
8
8
.