题目:
动手操作,探究填空:
请准备一个锐角三角形的纸片,三个顶点分别标上字母A、B、C,并标出AB边的中点D及AC边的中点E.
(1)把△ABC沿DE对折,观察点A是否落在边BC上?
答:点A
在
在
(填“在”或“不在”)边BC上;
(2)在(1)的基础上将△ACE对折,使线段CE与EA重合,此时点A是否与点C重合折出的图形中有几个直角?
答:点A与点C
重合
重合
(填“重合”或“不重合”);图形中有
2
2
个直角;
(3)在(1)(2)的基础上将△ADB对折,使线段DB与DA重合,观察折得的图形,说出新图形的名称是
长方
长方
形;
(4)经过以上折叠,原△ABC的三个内角是否合并到一起了?这又说明何道理?
答:原△ABC的三个内角
已经
已经
合并到一起;(填“已经”或“没有”)
说明的道理是:
三角形的内角和为180°
三角形的内角和为180°
.