试题

题目:
青果学院(2011·朝阳区一模)如图,在矩形ABCD中,AB=5,BC=4,将矩形ABCD翻折,使得点B落在CD边上的点E处,折痕AF交BC于点F,求FC的长.
答案
解:由题意,得AE=AB=5,AD=BC=4,EF=BF,
在Rt△ADE中,由勾股定理,得DE=3.
在矩形ABCD中,DC=AB=5.
∴CE=DC-DE=2.
设FC=x,则EF=4-x.
在Rt△CEF中,x2+22=(4-x)2
解得x=
3
2

即FC=
3
2

解:由题意,得AE=AB=5,AD=BC=4,EF=BF,
在Rt△ADE中,由勾股定理,得DE=3.
在矩形ABCD中,DC=AB=5.
∴CE=DC-DE=2.
设FC=x,则EF=4-x.
在Rt△CEF中,x2+22=(4-x)2
解得x=
3
2

即FC=
3
2
考点梳理
翻折变换(折叠问题).
根据翻转前后,图形的对应边和对应角相等,可知EF=BF,AB=AE,故可求出DE的长,然后设出FC的长,则EF=4-FC,再根据勾股定理的知识,即可求出答案.
本题考查了翻转变换的知识,属于基础题,注意掌握图形翻转前后对应边和对应角相等.
计算题.
找相似题