答案
证明:∵△ABC沿DE折叠,使点A落在BC边上的点F处,
∴DA=DF,AE=FE,∠ADE=∠FDE,
∴∠B=∠DFB,
∵∠ADF=∠B+∠DFB,即∠ADE+∠FDE=∠B+∠DFB,
∴∠ADE=∠B,
∴DE∥BC,
而D为AB的中点,
∴DE为△ABC的中位线,
∴AE=EC,
∴EF=EC.
证明:∵△ABC沿DE折叠,使点A落在BC边上的点F处,
∴DA=DF,AE=FE,∠ADE=∠FDE,
∴∠B=∠DFB,
∵∠ADF=∠B+∠DFB,即∠ADE+∠FDE=∠B+∠DFB,
∴∠ADE=∠B,
∴DE∥BC,
而D为AB的中点,
∴DE为△ABC的中位线,
∴AE=EC,
∴EF=EC.