试题
题目:
如图,将长方形纸片的两角分别折叠,使顶点B落在B′处,顶点A落在A′处,EC、ED为折痕,并且点E、A′、B′在同一条直线上.若∠BED=32°,求∠CED和∠AEC的度数.
答案
解:∵EC和ED是折痕,
∴∠1=∠2,∠3=∠4,
又∵∠1+∠2+∠3+∠4=180°,
∴2(∠2+∠3)=180°,
∴∠2+∠3=90°,
即∠CED=90°.
又∠2=∠1=32°,
∴∠4=∠3=90°-∠1=90°-32°=58°,
即∠AEC=58°.
解:∵EC和ED是折痕,
∴∠1=∠2,∠3=∠4,
又∵∠1+∠2+∠3+∠4=180°,
∴2(∠2+∠3)=180°,
∴∠2+∠3=90°,
即∠CED=90°.
又∠2=∠1=32°,
∴∠4=∠3=90°-∠1=90°-32°=58°,
即∠AEC=58°.
考点梳理
考点
分析
点评
专题
翻折变换(折叠问题);角平分线的定义;角的计算.
根据翻折的性质,只要证明∠2+∠3=90°即可;根据∠2+∠3=90°及对角线知识可求得∠CED.
本题考查翻折变换的知识,折叠问题要重视折痕,找清折痕两边重合的部分,即相等的边,相等的角有哪些,找准这些关系对解决题目有很大帮助.
计算题.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
如图a,ABCD是一矩形纸片,AB=6cm,AD=8cm,E是AD上一点,且AE=6cm.操作:(1)将AB向AE折过去,使AB与AE重合,得折痕AF,如图b;(2)将△AFB以BF为折痕向右折过去,得图c.则△GFC的面积是
2
2
cm
2
.
如图,将△ABC沿直线AC翻折得到△AB′C,若∠BAC=25°,则∠AB′B=
65
65
度.
如图,先将一平行四边形纸片ABCD沿AE,EF折叠,使点E,B′,C′在同一直线上,再将折叠的纸片沿EG折叠,使AE落在EF上,则∠AEG=
45
45
度.
如图,在△ABC中,∠B=90°.AB=3,BC=5.将△ABC折叠,使点C与点A重合,拆痕为DE,则△ABE的周长为
8
8
.