试题

题目:
青果学院(2012·黑河)如图所示,沿DE折叠长方形ABCD的一边,使点C落在AB边上的点F处,若AD=8,且△AFD的面积为60,则△DEC的面积为
289
8
289
8

答案
289
8

解:∵四边形ABCD是矩形,
∴∠A=∠B=90°,BC=AD=8,CD=AB,
∵△AFD的面积为60,
1
2
AD·AF=60,
解得:AF=15,
∴DF=
AD2+AF2
=17,
由折叠的性质,得:CD=DF=17,
∴AB=17,
∴BF=AB-AF=17-15=2,
设CE=x,则EF=CE=x,BE=BC-CE=8-x,
在Rt△BEF中,EF2=BF2+BE2
即x2=22+(8-x)2
解得:x=
17
4

即CE=
17
4

∴△DEC的面积为:
1
2
CD·CE=
1
2
×17×
17
4
=
289
8

故答案为:
289
8
考点梳理
翻折变换(折叠问题).
由AD=8,且△AFD的面积为60,即可求得AF与DF的长,由折叠的性质,可得CD=DF,然后在Rt△BEF中,利用勾股定理即可求得CE的长,继而求得△DEC的面积.
此题考查了矩形的性质、折叠的性质、勾股定理以及三角形面积问题.此题难度适中,注意掌握数形结合思想与方程思想的应用,注意折叠中的对应关系.
找相似题