试题
题目:
(2011·绵阳)如图,将长8cm,宽4cm的矩形纸片ABCD折叠,使点A与C重合,则折痕EF的长等于
2
5
2
5
cm.
答案
2
5
解:连接AC,与EF交于O点,
∵E点在AB上,F在CD上,因为A、C点重合,EF是折痕,
∴AO=CO,EF⊥AC,
∵AB=8,BC=4,
∴AC=4
5
,
∵AE=CE,
∴∠EAO=∠ECO,
∴△OEC∽△BCA,
∴OE:BC=OC:BA,
∴OE=
5
,
∴EF=2OE=2
5
.
故答案为:2
5
.
考点梳理
考点
分析
点评
专题
翻折变换(折叠问题).
连接A、C,则EF垂直平分AC,推出△OEC∽△BCA,根据勾股定理,可以求出AC的长度,根据相似比求出OE即可.
本题主要考查了勾股定理、相似三角形的判定和性质、轴对称的性质,解题的关键是作好辅助线找到相关的相似三角形.
压轴题.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
如图a,ABCD是一矩形纸片,AB=6cm,AD=8cm,E是AD上一点,且AE=6cm.操作:(1)将AB向AE折过去,使AB与AE重合,得折痕AF,如图b;(2)将△AFB以BF为折痕向右折过去,得图c.则△GFC的面积是
2
2
cm
2
.
如图,将△ABC沿直线AC翻折得到△AB′C,若∠BAC=25°,则∠AB′B=
65
65
度.
如图,先将一平行四边形纸片ABCD沿AE,EF折叠,使点E,B′,C′在同一直线上,再将折叠的纸片沿EG折叠,使AE落在EF上,则∠AEG=
45
45
度.
如图,在△ABC中,∠B=90°.AB=3,BC=5.将△ABC折叠,使点C与点A重合,拆痕为DE,则△ABE的周长为
8
8
.