试题
题目:
(2009·海南)如图,将矩形纸片ABCD沿EF折叠后,点C、D分别落在点C′、D′处,若∠AFE=65°,则∠C′EF=
65
65
度.
答案
65
解:∵AD∥BC
∴∠FEC=∠AFE=65°
又∵沿EF折叠
∴∠C′EF=∠FEC=65°.
考点梳理
考点
分析
点评
专题
翻折变换(折叠问题).
利用矩形ABCD可知,AD∥BC,所以∠FEC=∠AFE=65°,又因为沿EF折叠,根据折叠的性质可知∠C的度数.
本题利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②平行线的性质求解.
应用题;压轴题.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
如图a,ABCD是一矩形纸片,AB=6cm,AD=8cm,E是AD上一点,且AE=6cm.操作:(1)将AB向AE折过去,使AB与AE重合,得折痕AF,如图b;(2)将△AFB以BF为折痕向右折过去,得图c.则△GFC的面积是
2
2
cm
2
.
如图,将△ABC沿直线AC翻折得到△AB′C,若∠BAC=25°,则∠AB′B=
65
65
度.
如图,先将一平行四边形纸片ABCD沿AE,EF折叠,使点E,B′,C′在同一直线上,再将折叠的纸片沿EG折叠,使AE落在EF上,则∠AEG=
45
45
度.
如图,在△ABC中,∠B=90°.AB=3,BC=5.将△ABC折叠,使点C与点A重合,拆痕为DE,则△ABE的周长为
8
8
.