试题
题目:
(2006·威海)如图,梯形纸片ABCD,已知AB∥CD,AD=BC,AB=6,CD=3.将该梯形纸片沿对角线AC折叠,点D恰与AB边上的E点重合,则∠B=
60
60
度.
答案
60
解:∵AB∥CD
∴∠D+∠DAB=180°
∵CD=CE=3,∠D=∠AEC=180°-∠CEB
∴∠DAE=∠CEB
∴CE∥AD
∴四边形CDAE是平行四边形
∴AD=CE=CB=3,
∴AE=AD=3
∴BE=AB-AE=3
∴BE=CE=BC
即△CEB是等边三角形
∴∠B=60°.
考点梳理
考点
分析
点评
专题
翻折变换(折叠问题).
由折叠的性质知CD=CE=3,∠D=∠AEC=180°-∠CEB,易证明四边形CDAE是平行四边形,根据平行四边形的性质可得BE=CE=BC,判定△CEB是等边三角形,则有∠B=60°.
本题利用了:1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、平行四边形和等边三角形的判定和性质求解.
应用题.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
如图a,ABCD是一矩形纸片,AB=6cm,AD=8cm,E是AD上一点,且AE=6cm.操作:(1)将AB向AE折过去,使AB与AE重合,得折痕AF,如图b;(2)将△AFB以BF为折痕向右折过去,得图c.则△GFC的面积是
2
2
cm
2
.
如图,将△ABC沿直线AC翻折得到△AB′C,若∠BAC=25°,则∠AB′B=
65
65
度.
如图,先将一平行四边形纸片ABCD沿AE,EF折叠,使点E,B′,C′在同一直线上,再将折叠的纸片沿EG折叠,使AE落在EF上,则∠AEG=
45
45
度.
如图,在△ABC中,∠B=90°.AB=3,BC=5.将△ABC折叠,使点C与点A重合,拆痕为DE,则△ABE的周长为
8
8
.