试题
题目:
(2009·自贡)如图,把矩形纸片ABCD沿EF折叠,使点B落在AD边上的点B′处,点A落在A′处.
(1)求证:B′E=BF;
(2)设AE=a,AB=b,BF=c,试猜想a、b、c之间有何等量关系,并给予说明.
答案
(1)证明:由题意得B′F=BF,∠B′FE=∠BFE,
∵在矩形ABCD中,AD∥BC,
∴∠B′EF=∠BFE,
∴∠B′FE=∠B'EF,
∴B′F=B′E,
∴B′E=BF;
(2)a,b,c三者关系不唯一,有两种可能情况:
(ⅰ)a,b,c三者存在的关系是a
2
+b
2
=c
2
.
证明:连接BE,则BE=B′E,
∵由(1)知B′E=BF=c,
∴BE=c.
在△ABE中,∠A=90°,
∴AE
2
+AB
2
=BE
2
,
∵AE=a,AB=b,
∴a
2
+b
2
=c
2
;
(ⅱ)a,b,c三者存在的关系是a+b>c.
证明:连接BE,则BE=B′E.
∵由(1)知B′E=BF=c,
∴BE=c,
∵在△ABE中,AE+AB>BE,
∴a+b>c.
(1)证明:由题意得B′F=BF,∠B′FE=∠BFE,
∵在矩形ABCD中,AD∥BC,
∴∠B′EF=∠BFE,
∴∠B′FE=∠B'EF,
∴B′F=B′E,
∴B′E=BF;
(2)a,b,c三者关系不唯一,有两种可能情况:
(ⅰ)a,b,c三者存在的关系是a
2
+b
2
=c
2
.
证明:连接BE,则BE=B′E,
∵由(1)知B′E=BF=c,
∴BE=c.
在△ABE中,∠A=90°,
∴AE
2
+AB
2
=BE
2
,
∵AE=a,AB=b,
∴a
2
+b
2
=c
2
;
(ⅱ)a,b,c三者存在的关系是a+b>c.
证明:连接BE,则BE=B′E.
∵由(1)知B′E=BF=c,
∴BE=c,
∵在△ABE中,AE+AB>BE,
∴a+b>c.
考点梳理
考点
分析
点评
翻折变换(折叠问题).
(1)首先根据题意得B′F=BF,∠B′FE=∠BFE,接着根据平行线的性质和等腰三角形的判定即可证明B′E=BF;
(2)解答此类题目时要仔细读题,根据三角形三边关系求解分类讨论解答,要提高全等三角形的判定结合勾股定理解答.
此题主要考查了矩形的翻折、等角对等边、三角形全等、勾股定理等知识,寻找几何元素之间的对应关系,形成较为常规的方法解决问题,利用等角对等边、翻折等知识来证明是解题关键.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
如图a,ABCD是一矩形纸片,AB=6cm,AD=8cm,E是AD上一点,且AE=6cm.操作:(1)将AB向AE折过去,使AB与AE重合,得折痕AF,如图b;(2)将△AFB以BF为折痕向右折过去,得图c.则△GFC的面积是
2
2
cm
2
.
如图,将△ABC沿直线AC翻折得到△AB′C,若∠BAC=25°,则∠AB′B=
65
65
度.
如图,先将一平行四边形纸片ABCD沿AE,EF折叠,使点E,B′,C′在同一直线上,再将折叠的纸片沿EG折叠,使AE落在EF上,则∠AEG=
45
45
度.
如图,在△ABC中,∠B=90°.AB=3,BC=5.将△ABC折叠,使点C与点A重合,拆痕为DE,则△ABE的周长为
8
8
.