试题

题目:
青果学院将△ABC沿着平行于BC的直线折叠,点A落到点A′,若∠C=120°,∠A=26°,则∠A′DB的度数为
112°
112°

答案
112°

解:∵∠C=120°,∠A=26°,
∴∠B=180°-(∠A+∠C)=34°,
又∵DE∥BC,
∴∠ADE=∠B=34°,
根据折叠的性质可得∠ADE=∠A'DE,
∴∠A'DE=∠ADE=∠B=34°,
∴∠A′DB=180°-∠ADE-∠A'DE=112°.
故答案为:112°.
考点梳理
翻折变换(折叠问题).
利用三角形的内角和为180°求出∠B,从而根据平行线的性质可得∠ADE=∠B,再由折叠的性质得出∠ADE=∠A'DE,利用平角的知识可求出∠A′DB的度数.
本题考查折叠的性质,注意掌握折叠前后对应角相等,另外解答本题需要用到三角形的内角和定理及平行线的性质,也要注意对这些基础知识的掌握.
数形结合.
找相似题