试题
题目:
(2012·陕西)在平面直角坐标系中,将抛物线y=x
2
-x-6向上(下)或向左(右)平移m个单位,使平移后的抛物线恰好经过原点,则|m|的最小值为( )
A.1
B.2
C.3
D.6
答案
B
解:当x=0时,y=-6,故函数图象与y轴交于点C(0,-6),
当y=0时,x
2
-x-6=0,即(x+2)(x-3)=0,
解得x=-2或x=3,
即A(-2,0),B(3,0);
由图可知,函数图象至少向右平移2个单位恰好过原点,
故|m|的最小值为2.
故选B.
考点梳理
考点
分析
点评
专题
二次函数图象与几何变换.
计算出函数与x轴、y轴的交点,将图象适当运动,即可判断出抛物线移动的距离及方向.
本题考查了二次函数与几何变换,画出函数图象是解题的关键.
压轴题;探究型.
找相似题
(2013·枣庄)将抛物线y=3x
2
向左平移2个单位,再向下平移1个单位,所得抛物线为( )
把抛物线y=3x
2
向右平移2个单位,再向上平移1个单位,所得抛物线的解析式为
y=3(x-2)
2
+1
y=3(x-2)
2
+1
.
将二次函数y=x
2
的图象向右平移1个单位,在向上平移2个单位后,所得图象的函数表达式是
y=(x-1)
2
+2
y=(x-1)
2
+2
.
(2010·嘉定区一模)将抛物线y=x
2
+3向下平移一个单位,得到新的抛物线,那么新的抛物线的表达式是
y=x
2
+2
y=x
2
+2
.
(2010·松江区三模)如果将抛物线y=x
2
向左平移4个单位,再向下平移2个单位后,那么此时抛物线的表达式是
y=(x+4)
2
-2
y=(x+4)
2
-2
.