试题
题目:
(2013·上城区二模)已知函数y=(x-m)(x-n)(其中m<n)的图象如下面图所示,则函数y=nx+m的图象可能正确的是( )
A.
B.
C.
D.
答案
D
解:如图,∵函数y=(x-m)(x-n)(其中m<n),
∴抛物线与x轴的两个交点横坐标分别是m,n,且m<0<n.
∴y=nx+m的图象经过第一、三象限,且与y轴交于负半轴.
故选:D.
考点梳理
考点
分析
点评
二次函数图象与系数的关系;一次函数图象与系数的关系.
根据图象可得出方程=(x-m)(x-n)=0的两个实数根为m,n,且一正一负,又m<n,则m<0<n.根据一次函数y=nx+m的图象的性质即可得出答案.
本题考查了抛物线与x轴的交点问题以及一次函数的性质,是重点内容要熟练掌握.
找相似题
(2013·资阳)如图,抛物线y=ax
2
+bx+c(a≠0)过点(1,0)和点(0,-2),且顶点在第三象限,设P=a-b+c,则P的取值范围是( )
二次函数y=ax
2
+bx+c的图象如上图所示,那么关于此二次函数的下列四个结论:①a>0;②c<0;③b
2
-4ac>0;④b<0中,正确的结论有( )
二次函数y=ax
2
+bx+c的图象如图所示,则abc,b
2
-4ac,2a+b,a+b+c这四个式子中,值为正数的有( )
二次函数y=ax
2
+bx+c(a≠0)的图象如图,则点A(b
2
-4ac,
-
b
a
)在( )
如图,二次函数y=ax
2
+bx+c的图象开口向上,图象经过点(-1,2)和(1,0),且与y轴相交于负半轴.给出5个结论:①abc<0;②b
2
-4ac>0 ③2a+b>0;④a+c=1; ⑤a>1.其中结论正确的个数为( )