试题
题目:
(2012·剑川县一模)二次函数y=ax
2
+bx+c(a≠0)的图象如图所示,则下列判断中正确的有( )个.
①a<0;②b>0;③c>0;④2a+b>0;⑤
-
b
2a
<0
;⑥a+b+c>0.
A.2
B.3
C.4
D.5
答案
B
解:①∵根据图示知,二次函数图象的开口方向向下,
∴a<0;
故本选项正确;
②∵对称轴x=-
b
2a
<0,
∴b<0;
故本选项错误;
③∵该函数图象与y轴交于正半轴,
∴c>0;
故本选项正确;
④∵对称轴x=-
b
2a
<0,a<0,
∴2a+b<0;
故本选项错误;
⑤∵对称轴x=-
b
2a
<0,
∴-
b
2a
<0;
故本选项正确;
⑥根据图示知,当x=1时,y<0,即a+b+c<0;
故本选项错误;
综上所述,以上说法中正确的有①③⑤,共3个;
故选B.
考点梳理
考点
分析
点评
二次函数图象与系数的关系.
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴的符号进行推理,进而对所得结论进行判断.
主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换.
找相似题
(2013·资阳)如图,抛物线y=ax
2
+bx+c(a≠0)过点(1,0)和点(0,-2),且顶点在第三象限,设P=a-b+c,则P的取值范围是( )
二次函数y=ax
2
+bx+c的图象如上图所示,那么关于此二次函数的下列四个结论:①a>0;②c<0;③b
2
-4ac>0;④b<0中,正确的结论有( )
二次函数y=ax
2
+bx+c的图象如图所示,则abc,b
2
-4ac,2a+b,a+b+c这四个式子中,值为正数的有( )
二次函数y=ax
2
+bx+c(a≠0)的图象如图,则点A(b
2
-4ac,
-
b
a
)在( )
如图,二次函数y=ax
2
+bx+c的图象开口向上,图象经过点(-1,2)和(1,0),且与y轴相交于负半轴.给出5个结论:①abc<0;②b
2
-4ac>0 ③2a+b>0;④a+c=1; ⑤a>1.其中结论正确的个数为( )