试题
题目:
已知二次函数y=-
1
2
x
2
-x+4回答下列问题:
(1)用配方法将其化成y=a (x-h)
2
+k的形式
(2)指出抛物线的顶点坐标和对称轴
(3)当x取何值时,y随x增大而增大;当x取何值时,y随x增大而减小?
答案
解:(1)y=-
1
2
x
2
-x+4=-
1
2
(x+1)
2
+
9
2
;
(2)由(1)可得顶点为(-1,
9
2
);对称轴x=-1;
(3)图象开口向下,x<-1时,函数为增函数,此时y随x增大而增大;
当x>-1时,函数为减函数,此时y随x增大而减小.
解:(1)y=-
1
2
x
2
-x+4=-
1
2
(x+1)
2
+
9
2
;
(2)由(1)可得顶点为(-1,
9
2
);对称轴x=-1;
(3)图象开口向下,x<-1时,函数为增函数,此时y随x增大而增大;
当x>-1时,函数为减函数,此时y随x增大而减小.
考点梳理
考点
分析
点评
专题
二次函数图象与系数的关系;二次函数的性质.
(1)利用配方法先提出二次项系数,在加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.
(2)二次函数的一般形式中的顶点式是:y=a(x-h)
2
+k(a≠0,且a,h,k是常数),它的对称轴是x=h,顶点坐标是(h,k).
(3)结合对称轴及开口方向可确定抛物线的增减性.
本题考查了二次函数图象与系数的关系及二次函数的性质,难度不大,关键掌握对称轴方程和判断函数的增减性.
计算题.
找相似题
(2013·资阳)如图,抛物线y=ax
2
+bx+c(a≠0)过点(1,0)和点(0,-2),且顶点在第三象限,设P=a-b+c,则P的取值范围是( )
二次函数y=ax
2
+bx+c的图象如上图所示,那么关于此二次函数的下列四个结论:①a>0;②c<0;③b
2
-4ac>0;④b<0中,正确的结论有( )
二次函数y=ax
2
+bx+c的图象如图所示,则abc,b
2
-4ac,2a+b,a+b+c这四个式子中,值为正数的有( )
二次函数y=ax
2
+bx+c(a≠0)的图象如图,则点A(b
2
-4ac,
-
b
a
)在( )
如图,二次函数y=ax
2
+bx+c的图象开口向上,图象经过点(-1,2)和(1,0),且与y轴相交于负半轴.给出5个结论:①abc<0;②b
2
-4ac>0 ③2a+b>0;④a+c=1; ⑤a>1.其中结论正确的个数为( )