试题
题目:
(2013·义乌市)如图,抛物线y=ax
2
+bx+c与x轴交于点A(-1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:
①当x>3时,y<0;②3a+b>0;③-1≤a≤-
2
3
;④3≤n≤4中,
正确的是( )
A.①②
B.③④
C.①④
D.①③
答案
D
解:①∵抛物线y=ax
2
+bx+c与x轴交于点A(-1,0),对称轴直线是x=1,
∴该抛物线与x轴的另一个交点的坐标是(3,0),
∴根据图示知,当x>3时,y<0.
故①正确;
②根据图示知,抛物线开口方向向下,则a<0.
∵对称轴x=-
b
2a
=1,
∴b=-2a,
∴3a+b=3a-2a=a<0,即3a+b<0.
故②错误;
③∵抛物线与x轴的两个交点坐标分别是(-1,0),(3,0),
∴-1×3=-3,
∴
c
a
=-3,则a=-
c
3
.
∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),
∴2≤c≤3,
∴-1≤-
c
3
≤-
2
3
,即-1≤a≤-
2
3
.
故③正确;
④根据题意知,a=-
c
3
,-
b
2a
=1,
∴b=-2a=
2c
3
,
∴n=a+b+c=
4
3
c.
∵2≤c≤3,
∴
8
3
≤
4
3
c≤4,即
8
3
≤n≤4.
故④错误.
综上所述,正确的说法有①③.
故选D.
考点梳理
考点
分析
点评
专题
二次函数图象与系数的关系.
①由抛物线的对称轴为直线x=1,一个交点A(-1,0),得到另一个交点坐标,利用图象即可对于选项①作出判断;
②根据抛物线开口方向判定a的符号,由对称轴方程求得b与a的关系是b=-2a,将其代入(3a+b),并判定其符号;
③根据两根之积
c
a
=-3,得到a=-
c
3
,然后根据c的取值范围利用不等式的性质来求a的取值范围;
④把顶点坐标代入函数解析式得到n=a+b+c=
4
3
c,利用c的取值范围可以求得n的取值范围.
本题考查了二次函数图象与系数的关系.二次函数y=ax
2
+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.
计算题;压轴题.
找相似题
(2013·资阳)如图,抛物线y=ax
2
+bx+c(a≠0)过点(1,0)和点(0,-2),且顶点在第三象限,设P=a-b+c,则P的取值范围是( )
二次函数y=ax
2
+bx+c的图象如上图所示,那么关于此二次函数的下列四个结论:①a>0;②c<0;③b
2
-4ac>0;④b<0中,正确的结论有( )
二次函数y=ax
2
+bx+c的图象如图所示,则abc,b
2
-4ac,2a+b,a+b+c这四个式子中,值为正数的有( )
二次函数y=ax
2
+bx+c(a≠0)的图象如图,则点A(b
2
-4ac,
-
b
a
)在( )
如图,二次函数y=ax
2
+bx+c的图象开口向上,图象经过点(-1,2)和(1,0),且与y轴相交于负半轴.给出5个结论:①abc<0;②b
2
-4ac>0 ③2a+b>0;④a+c=1; ⑤a>1.其中结论正确的个数为( )