试题
题目:
y=ax
2
+bx+c(a≠0)的图象如图所示,则下面六个代数式:abc;b
2
-4ac;a-b+c;a+b+c;2a-b;9a-4b,值小于0的有( )
A.1个
B.2个
C.3个
D.4个
答案
C
解:①由抛物线的开口方向向上可推出a<0;
因为对称轴在y轴左侧,对称轴为x=
-
b
2a
<0,
又因为a<0,b<0;
由抛物线与y轴的交点在y轴的负半轴上,
∴c<0,
故abc<0;
②抛物线与x轴有两个交点,b
2
-4ac>0;
③当x=-1时,a-b+c>0;
④当x=1时,y=a+b+c<0;
⑤对称轴x=-
b
2a
=-1,2a=b,2a-b=0;
⑥∵b=2a,且a<0,
∴9a-4b=9a-8a=a<0,
则①④⑥的值小于0,
故选C.
考点梳理
考点
分析
点评
专题
二次函数图象与系数的关系.
根据抛物线的开口方向和对称轴的位置及定顶点的位置,再结合图形可推出a<0,b<0,c<0,由此可判断各式的符号.
此题考查了点与函数的对应关系,难度一般,关键掌握二次项系数a决定抛物线的开口方向和大小,注意数形结合思想的应用.
计算题.
找相似题
(2013·资阳)如图,抛物线y=ax
2
+bx+c(a≠0)过点(1,0)和点(0,-2),且顶点在第三象限,设P=a-b+c,则P的取值范围是( )
二次函数y=ax
2
+bx+c的图象如上图所示,那么关于此二次函数的下列四个结论:①a>0;②c<0;③b
2
-4ac>0;④b<0中,正确的结论有( )
二次函数y=ax
2
+bx+c的图象如图所示,则abc,b
2
-4ac,2a+b,a+b+c这四个式子中,值为正数的有( )
二次函数y=ax
2
+bx+c(a≠0)的图象如图,则点A(b
2
-4ac,
-
b
a
)在( )
如图,二次函数y=ax
2
+bx+c的图象开口向上,图象经过点(-1,2)和(1,0),且与y轴相交于负半轴.给出5个结论:①abc<0;②b
2
-4ac>0 ③2a+b>0;④a+c=1; ⑤a>1.其中结论正确的个数为( )