试题
题目:
函数y=ax
2
+bx+c(a≠0)的图象如图所示,则下列结论正确的个数是( )
(1)a+b+c<0;(2)a-b+c>0;(3)abc>0;(4)2a-b=0.
A.1
B.2
C.3
D.4
答案
A
解:∵抛物线的开口方向向下,
∴a<0,
∵抛物线与y轴的交点为在y轴的正半轴上,
∴c>0,
∵抛物线对称轴在y轴左侧,
∴对称轴为x=
-
b
2a
<0,
∴b<0,
故abc>0;
∴由题意知:只有(3)正确,其它则不能判断对错.
故选A.
考点梳理
考点
分析
点评
专题
二次函数图象与系数的关系.
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
本题主要考查图象与二次函数系数之间的关系,难度不大,关键是掌握根据图象判断二次函数系数的正负.
计算题.
找相似题
(2013·资阳)如图,抛物线y=ax
2
+bx+c(a≠0)过点(1,0)和点(0,-2),且顶点在第三象限,设P=a-b+c,则P的取值范围是( )
二次函数y=ax
2
+bx+c的图象如上图所示,那么关于此二次函数的下列四个结论:①a>0;②c<0;③b
2
-4ac>0;④b<0中,正确的结论有( )
二次函数y=ax
2
+bx+c的图象如图所示,则abc,b
2
-4ac,2a+b,a+b+c这四个式子中,值为正数的有( )
二次函数y=ax
2
+bx+c(a≠0)的图象如图,则点A(b
2
-4ac,
-
b
a
)在( )
如图,二次函数y=ax
2
+bx+c的图象开口向上,图象经过点(-1,2)和(1,0),且与y轴相交于负半轴.给出5个结论:①abc<0;②b
2
-4ac>0 ③2a+b>0;④a+c=1; ⑤a>1.其中结论正确的个数为( )