试题
题目:
二次函数y=ax
2
+bx+c的图象如图所示.下列结论正确的是( )
A.3|a|+|c|>2|b|
B.3|a|+|c|=2|b|
C.3|a|+|c|<2|b|
D.3|a|+|c|≤2|b|
答案
C
解:由函数图象可知a<0,c<0,由对称轴x=-
b
2a
>0,可知b>0,
∴3|a|+|c|-2|b|=-(3a+2b+c),
∵当x=1时,y=a+b+c>0,①
又对称轴x=-
b
2a
>1,解得2a+b>0,②
①+②得3a+2b+c>0,
∴-(3a+2b+c)<0,
∴3|a|+|c|<2|b|.
故选C.
考点梳理
考点
分析
点评
二次函数图象与系数的关系.
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点得出c的符号,然后根据抛物线对称轴得出b的符号,根据a、b、c的符号去绝对值,比较3|a|+|c|与2|b|的大小即可.
本题考查了二次函数图象与系数的关系.关键是通过图象判断系数的符号,根据图象得出对称轴的符号,x=1时,函数值的符号.
找相似题
(2013·资阳)如图,抛物线y=ax
2
+bx+c(a≠0)过点(1,0)和点(0,-2),且顶点在第三象限,设P=a-b+c,则P的取值范围是( )
二次函数y=ax
2
+bx+c的图象如上图所示,那么关于此二次函数的下列四个结论:①a>0;②c<0;③b
2
-4ac>0;④b<0中,正确的结论有( )
二次函数y=ax
2
+bx+c的图象如图所示,则abc,b
2
-4ac,2a+b,a+b+c这四个式子中,值为正数的有( )
二次函数y=ax
2
+bx+c(a≠0)的图象如图,则点A(b
2
-4ac,
-
b
a
)在( )
如图,二次函数y=ax
2
+bx+c的图象开口向上,图象经过点(-1,2)和(1,0),且与y轴相交于负半轴.给出5个结论:①abc<0;②b
2
-4ac>0 ③2a+b>0;④a+c=1; ⑤a>1.其中结论正确的个数为( )