试题
题目:
抛物线y=ax
2
+bx+c的图象如图,则下列结论:①abc>0;②a+b+c=2;③4a-2b+c<0;④b
2
-4ac>0.其中正确的结论是( )
A.①②
B.②③
C.②④
D.③④
答案
C
解:
∵图象开口向上,
∴a>0,
∵-
b
2a
<0,
∴b>0,
∵图象和Y轴的交点在负半轴上,
∴c<0,
∴①abc<0,此选项错误;
②当x=1时,y=a+b+c=2,此选项正确;
③当x=-2时,y=4a-2b+c>0,此选项错误;
④∵图象和X轴有两个交点,
∴△=b
2
-4ac>0,此选项正确.
故选C.
考点梳理
考点
分析
点评
二次函数图象与系数的关系.
根据局图象开口的方向可确定a的取值,再根据对称轴可确定b的取值,根据图象与y轴的交点,可确定c的取值,从而可确定a、b、c的取值;据图可知当x=1时,y=2;当x=-2时,图象在x轴的上方,故可知大于0;图象和x轴有两个交点说明△>0,据此判断即可.
本题考查了二次函数的图象与系数的关系,解题的关键是熟练掌握二次函数的图形性质,会代入一些特殊值进行计算(如:x=±1,x=±2时,函数的值).
找相似题
(2013·资阳)如图,抛物线y=ax
2
+bx+c(a≠0)过点(1,0)和点(0,-2),且顶点在第三象限,设P=a-b+c,则P的取值范围是( )
二次函数y=ax
2
+bx+c的图象如上图所示,那么关于此二次函数的下列四个结论:①a>0;②c<0;③b
2
-4ac>0;④b<0中,正确的结论有( )
二次函数y=ax
2
+bx+c的图象如图所示,则abc,b
2
-4ac,2a+b,a+b+c这四个式子中,值为正数的有( )
二次函数y=ax
2
+bx+c(a≠0)的图象如图,则点A(b
2
-4ac,
-
b
a
)在( )
如图,二次函数y=ax
2
+bx+c的图象开口向上,图象经过点(-1,2)和(1,0),且与y轴相交于负半轴.给出5个结论:①abc<0;②b
2
-4ac>0 ③2a+b>0;④a+c=1; ⑤a>1.其中结论正确的个数为( )