试题
题目:
如图,△ABC中,E、D是BC边上的三等分点,F是AC的中点,BF交AD、AE于G、F,则BG:GH:HF等于( )
A.1:2:3
B.3:5:2
C.5:3:2
D.5:3:1
答案
C
解:设BC=6a,则BD=DE=EC=2a,作FM∥BC交AE于点M,
∵F是AC的中点,
∴MF=
1
2
EC=a,
∵FM∥BC,
∴△BEH∽△FMH,
∴
HF
BH
=
MF
BE
=
a
4a
=
1
4
,则HF=
1
5
BF,
作DN∥AC交BF于点N,设AC=2b,则AF=CF=b,
∴△BDN∽△BCF,
∴
BD
BC
=
ND
CF
=
BN
BF
=
2a
6a
=
1
3
,
∴DN=
1
3
CF=
1
3
b,BN=
1
3
BF,
∵DN∥AC,
∴△DNG∽△AFG,
∴
NG
GF
=
DN
AF
=
1
3
b
b
=
1
3
,
∴NG=
1
3
GF,即NG=
1
4
NF=
1
4
(BF-BN)=
1
4
(BF-
1
3
BF)=
1
6
BF,
∴BG=
1
3
GF+
1
6
GF=
1
2
BF,
∴GM=BF-BG-HF=BF-
1
2
BF-
1
5
BF=
3
10
BF,
∴BG:GH:HF=
1
2
BF:
3
10
BF:
1
5
BF=5:3:2.
故选C.
考点梳理
考点
分析
点评
平行线分线段成比例;三角形中位线定理.
作FM∥BC交AE于点M,则根据△BEH∽△FMH,利用BF表示出HF的长度,作DN∥AC交BF于点N,则△BDN∽△BCF且△DNG∽△AFG,依据△BDN∽△BCF可以用BF表示出BN的长,然后依据△DNG∽△AFG表示出NG的长,则BG,GM,HF都可以利用BF表示出来,则比值即可求解.
本题考查了三角形的形似的判定与性质,正确利用相似三角形的性质,利用BF把BG,GM,HF表示出来是关键.
找相似题
(2013·温州)如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6,
AD
BD
=
3
4
,则EC的长是( )
(2010·黄埔区二模)在四边形ABCD中,AC、BD是四边形ABCD的两条对角线,点E、F、G、H分别是在四边形ABCD的四边上的动点,但E、F、G、H不与A、B、C、D重合,且EF∥BD∥GH,FG∥AC∥HE.
(1)若对角线AC=BD=a(定值),求证:四边形EFGH的周长是定值;
(2)若AC=m,BD=n,m、n为定值,但m≠n,则四边形EFGH的周长是定值吗?请指出,并说明理由.
(2010·黄浦区二模)如图,在梯形ABCD中,AD∥BC,对角线AC与BD交于点O,M、N分别为OB、OC的中点,又∠ACB=∠DBC.
(1)求证:AB=CD;
(2)若AD=
1
2
BC、求证:四边形ADNM为矩形.
(2010·金山区一模)如图,已知在平行四边形ABCD中,点E在边AD上,线段CE的延长线与线段BA的延长线交于点F,CD=6,AE=
1
2
ED,求BF的长.
(2011·徐汇区一模)如图,在Rt△ABC中,∠ACB=90°,AB=15,
tanA=
4
3
,E为线AC上一点(不与A、C重合),过点E作ED⊥AC交线段AB于点D,将△ADE沿着直线DE翻折,A的对应点G落在射线AC上,线段DG与线段BC交于点M.
(1)若BM=8,求证:EM∥AB;
(2)设EC=x,四边形的ADMC的面积为S,求S关于x的函数解析式,并写出定义域.