试题
题目:
过△ABC的顶点B的两条直线分三角形BC边上的中线所成的比AE:EF:FD=4:3:1,则这两条直线分AC边所成的比AG:GH:HC为( )
A.4:5:3
B.3:4:2
C.2:3:1
D.1:1:1
答案
B
解:如图,过点D作DM∥AC交BG、BH于点N、M,
∴
DN
AG
=
DE
AE
,
DM
AH
=
DF
AF
,
∵AE:EF:FD=4:3:1,
∴
DE
AE
=
1+3
4
=1,
DF
AF
=
1
4+3
=
1
7
,
∴DN=AG,DM=
1
7
AH,
又∵AD是△ABC的中线,
∴点D是BC的中点,
∴点N是BG的中点,点M是BH的中点,
∴DN=
1
2
CG,DM=
1
2
CH,
∴AG=
1
2
CG,CH=
2
7
AH,
∵AG+CG=AC,CH+AH=AC,
∴AG=
1
3
AC,CH=
2
9
AC,
∴GH=AC-AG-CH=AC-
1
3
AC-
2
9
AC=
4
9
AC,
∴AG:GH:HC=
1
3
AC:
4
9
AC:
2
9
AC=3:4:2.
故选B.
考点梳理
考点
分析
点评
平行线分线段成比例.
根据AD是中线得点D是中点,过点D作DM∥AC交BG、BH于点N、M,则N、M也是边BG与边BH的中点,然后根据平行线分线段成比例定理列式求出AG与AC的关系,CH与AC的关系,再求出GH与AC的关系,然后即可求出AG:GH:HC的比值.
本题考查了平行线分线段成比例定理,三角形的中位线等于第三边的一半的性质,作出平行线,用AC表示出AG、GH、HC是解题的关键,本题难度较大,灵活性较强,是道不错的好题.
找相似题
(2013·温州)如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6,
AD
BD
=
3
4
,则EC的长是( )
(2010·黄埔区二模)在四边形ABCD中,AC、BD是四边形ABCD的两条对角线,点E、F、G、H分别是在四边形ABCD的四边上的动点,但E、F、G、H不与A、B、C、D重合,且EF∥BD∥GH,FG∥AC∥HE.
(1)若对角线AC=BD=a(定值),求证:四边形EFGH的周长是定值;
(2)若AC=m,BD=n,m、n为定值,但m≠n,则四边形EFGH的周长是定值吗?请指出,并说明理由.
(2010·黄浦区二模)如图,在梯形ABCD中,AD∥BC,对角线AC与BD交于点O,M、N分别为OB、OC的中点,又∠ACB=∠DBC.
(1)求证:AB=CD;
(2)若AD=
1
2
BC、求证:四边形ADNM为矩形.
(2010·金山区一模)如图,已知在平行四边形ABCD中,点E在边AD上,线段CE的延长线与线段BA的延长线交于点F,CD=6,AE=
1
2
ED,求BF的长.
(2011·徐汇区一模)如图,在Rt△ABC中,∠ACB=90°,AB=15,
tanA=
4
3
,E为线AC上一点(不与A、C重合),过点E作ED⊥AC交线段AB于点D,将△ADE沿着直线DE翻折,A的对应点G落在射线AC上,线段DG与线段BC交于点M.
(1)若BM=8,求证:EM∥AB;
(2)设EC=x,四边形的ADMC的面积为S,求S关于x的函数解析式,并写出定义域.