试题
题目:
(2009·贺州)如图,正方形ABCD的边长为1cm,E、F分别是BC、CD的中点,连接BF、DE,则图中阴影部分的面积是
2
3
2
3
cm
2
.
答案
2
3
解:连接AC,过点O作MN∥BC交AB于点M,交DC于点N,PQ∥CD交AD于点P,交BC于点Q;
∵AC为∠BAD的角平分线,
∴OM=OP,OQ=ON;
设OM=OP=h
1
,ON=OQ=h
2
,
∵ON∥BC,
∴
ON
CE
=
DN
DC
,
即
h2
1
2
=
1-h2
1
,
解得:h
2
=
1
3
;
∴OM=OP=h
1
=1-
1
3
=
2
3
(cm);
∴S
阴影
=S
△AOB
+S
△AOD
=
1
2
×1×
2
3
+
1
2
×1×
2
3
=
2
3
(cm
2
).
考点梳理
考点
分析
点评
专题
正方形的性质;平行线分线段成比例.
阴影部分的面积可转化为两个三角形面积之和,根据角平分线定理,可知阴影部分两个三角形的高相等,正方形的边长已知,故只需将三角形的高求出即可,根据△DON∽△DEC可将△ODC的高求出,进而可将阴影部分两个三角形的高求出.
求不规则图形面积可通过几个规则图形面积相加或相减求得.
压轴题.
找相似题
(2013·温州)如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6,
AD
BD
=
3
4
,则EC的长是( )
(2010·黄埔区二模)在四边形ABCD中,AC、BD是四边形ABCD的两条对角线,点E、F、G、H分别是在四边形ABCD的四边上的动点,但E、F、G、H不与A、B、C、D重合,且EF∥BD∥GH,FG∥AC∥HE.
(1)若对角线AC=BD=a(定值),求证:四边形EFGH的周长是定值;
(2)若AC=m,BD=n,m、n为定值,但m≠n,则四边形EFGH的周长是定值吗?请指出,并说明理由.
(2010·黄浦区二模)如图,在梯形ABCD中,AD∥BC,对角线AC与BD交于点O,M、N分别为OB、OC的中点,又∠ACB=∠DBC.
(1)求证:AB=CD;
(2)若AD=
1
2
BC、求证:四边形ADNM为矩形.
(2010·金山区一模)如图,已知在平行四边形ABCD中,点E在边AD上,线段CE的延长线与线段BA的延长线交于点F,CD=6,AE=
1
2
ED,求BF的长.
(2011·徐汇区一模)如图,在Rt△ABC中,∠ACB=90°,AB=15,
tanA=
4
3
,E为线AC上一点(不与A、C重合),过点E作ED⊥AC交线段AB于点D,将△ADE沿着直线DE翻折,A的对应点G落在射线AC上,线段DG与线段BC交于点M.
(1)若BM=8,求证:EM∥AB;
(2)设EC=x,四边形的ADMC的面积为S,求S关于x的函数解析式,并写出定义域.