试题
题目:
(2010·日照)如图,在等腰直角三角形ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA=
1
5
,则AD的长是( )
A.
2
B.2
C.1
D.2
2
答案
B
解:作DE⊥AB于E点.
∵tan∠DBA=
1
5
=
DE
BE
,
∴BE=5DE,
∵△ABC为等腰直角三角形,
∴∠A=45°,
∴AE=DE.
∴BE=5AE,
又∵AC=6,
∴AB=6
2
.
∴AE+BE=5AE+AE=6
2
,
∴AE=
2
,
∴在等腰直角△ADE中,由勾股定理,得AD=
2
AE=2.
故选B.
考点梳理
考点
分析
点评
专题
解直角三角形.
作DE⊥AB,构造直角三角形,根据角的正弦值与三角形边的关系,可求出各边的长.
此题的关键是作辅助线,构造直角三角形,运用三角函数的定义建立关系式然后求解.
计算题;压轴题.
找相似题
(2013·绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( )
(2002·甘肃)如图,在Rt△ABC中,∠C=90°,AC=8,∠A的平分线AD=
16
3
3
,求∠B的度数及边BC、AB的长.
(2002·金华)如图,在△ABC中,AC=15,BC=18,sinC=
4
5
,D是AC上一个动点(不运动至点A,C),过D作DE∥
BC,交AB于E,过D作DF⊥BC,垂足为F,连接BD,设CD=x.
(1)用含x的代数式分别表示DF和BF;
(2)如果梯形EBFD的面积为S,求S关于x的函数关系式;
(3)如果△BDF的面积为S
1
,△BDE的面积为S
2
,那么x为何值时,S
1
=2S
2
.
(2002·上海)如图,已知四边形ABCD中,BC=CD=DB,∠ADB=90°,cos∠ABD=
4
5
.
求S
△ABD
:S
△BCD
.
(2002·无锡)已知:如图,四边形ABCD中,AD⊥AB,BC⊥AB,BC=2AD,DE⊥CD交边AB于E,连接CE.
(1)求证:DE
2
=AE·CE;
(2)若△CDE与四边形ABCD的面积之比为2:5,求sin∠BCE的值.