试题
题目:
(2013·绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( )
A.
28
25
cm
B.
21
20
cm
C.
28
15
cm
D.
25
21
cm
答案
B
解:∵四边形ABCD是菱形,对角线AC=8cm,BD=6cm,
∴AO=4cm,BO=3cm,
在Rt△AOB中,AB=
AO
2
+B
O
2
=5cm,
∵
1
2
BD×AC=AB×DH,
∴DH=
24
5
cm,
在Rt△DHB中,BH=
DB
2
-D
H
2
=
18
5
cm,
则AH=AB-BH=
7
5
cm,
∵tan∠HAG=
GH
AH
=
OB
AO
=
3
4
,
∴GH=
3
4
AH=
21
20
cm.
故选B.
考点梳理
考点
分析
点评
菱形的性质;勾股定理;解直角三角形.
先求出菱形的边长,然后利用面积的两种表示方法求出DH,在Rt△DHB中求出BH,然后得出AH,利用tan∠HAG的值,可得出GH的值.
本题考查了菱形的性质、解直角三角形及三角函数值的知识,注意菱形的面积等于对角线乘积的一半,也等于底乘高.
找相似题
(2002·甘肃)如图,在Rt△ABC中,∠C=90°,AC=8,∠A的平分线AD=
16
3
3
,求∠B的度数及边BC、AB的长.
(2002·金华)如图,在△ABC中,AC=15,BC=18,sinC=
4
5
,D是AC上一个动点(不运动至点A,C),过D作DE∥
BC,交AB于E,过D作DF⊥BC,垂足为F,连接BD,设CD=x.
(1)用含x的代数式分别表示DF和BF;
(2)如果梯形EBFD的面积为S,求S关于x的函数关系式;
(3)如果△BDF的面积为S
1
,△BDE的面积为S
2
,那么x为何值时,S
1
=2S
2
.
(2002·上海)如图,已知四边形ABCD中,BC=CD=DB,∠ADB=90°,cos∠ABD=
4
5
.
求S
△ABD
:S
△BCD
.
(2002·无锡)已知:如图,四边形ABCD中,AD⊥AB,BC⊥AB,BC=2AD,DE⊥CD交边AB于E,连接CE.
(1)求证:DE
2
=AE·CE;
(2)若△CDE与四边形ABCD的面积之比为2:5,求sin∠BCE的值.
(2003·湖州)(1)计算:
(
1
2
)
-1
-(
5
-1
)
0
+|-3|
(2)已知如图,在Rt△ABC中,∠C=Rt∠,AB=2,BC=1.求∠A的四个三角函数值.