试题
题目:
(2008·杭州)在直角坐标系xOy中,点P(4,y)在第一象限内,且OP与x轴正半轴的夹角为60°,则y的值是( )
A.
4
3
3
B.
4
3
C.8
D.2
答案
B
解:作PA⊥x轴于A.
根据题意,∠POA=60°,OA=4.
∵∠PAO=90°,∠POA=60°,
∴∠P=30°,
∴OP=2OA=2×4=8.
根据勾股定理,得OA
2
+PA
2
=OP
2
,
即4
2
+PA
2
=8
2
.
∴AP=
8
2
-
4
2
=4
3
.
即y的值为
4
3
.
故选B.
考点梳理
考点
分析
点评
坐标与图形性质;解直角三角形.
根据已知条件,画出草图,解直角三角形求解.
本题考查了平面直角坐标系内点的坐标求法及勾股定理的应用.
找相似题
(2013·绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( )
(2002·甘肃)如图,在Rt△ABC中,∠C=90°,AC=8,∠A的平分线AD=
16
3
3
,求∠B的度数及边BC、AB的长.
(2002·金华)如图,在△ABC中,AC=15,BC=18,sinC=
4
5
,D是AC上一个动点(不运动至点A,C),过D作DE∥
BC,交AB于E,过D作DF⊥BC,垂足为F,连接BD,设CD=x.
(1)用含x的代数式分别表示DF和BF;
(2)如果梯形EBFD的面积为S,求S关于x的函数关系式;
(3)如果△BDF的面积为S
1
,△BDE的面积为S
2
,那么x为何值时,S
1
=2S
2
.
(2002·上海)如图,已知四边形ABCD中,BC=CD=DB,∠ADB=90°,cos∠ABD=
4
5
.
求S
△ABD
:S
△BCD
.
(2002·无锡)已知:如图,四边形ABCD中,AD⊥AB,BC⊥AB,BC=2AD,DE⊥CD交边AB于E,连接CE.
(1)求证:DE
2
=AE·CE;
(2)若△CDE与四边形ABCD的面积之比为2:5,求sin∠BCE的值.