试题
题目:
(2006·荆州)如图,已知AD为等腰三角形ABC底边上的高,且tan∠B=
4
3
.AC上有一点E,满足AE:EC=2:3.那么,tan∠ADE是( )
A.
3
5
B.
2
3
C.
1
2
D.
1
3
答案
C
解:
如图.作EF∥CD交AD于F点.
∵tan∠B=tan∠C=
AD
CD
=
4
3
,
∴设CD=3X,则AD=4X.
∵AE:EC=AF:FD=(AD-FD):FD=2:3,
∴FD=
12
5
X,AF=
8
5
X.
∵AF:AD=EF:CD=2:5,
∴EF=
6
5
X.
∴tan∠ADE=
EF
FD
=
1
2
.
故选C.
考点梳理
考点
分析
点评
专题
解直角三角形.
作EF∥CD,利用锐角三角函数的概念和两直线平行对应边成比例求∠ADE的正切值.
此题考查等腰三角形的性质及三角函数的定义.
计算题;压轴题.
找相似题
(2013·绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( )
(2002·甘肃)如图,在Rt△ABC中,∠C=90°,AC=8,∠A的平分线AD=
16
3
3
,求∠B的度数及边BC、AB的长.
(2002·金华)如图,在△ABC中,AC=15,BC=18,sinC=
4
5
,D是AC上一个动点(不运动至点A,C),过D作DE∥
BC,交AB于E,过D作DF⊥BC,垂足为F,连接BD,设CD=x.
(1)用含x的代数式分别表示DF和BF;
(2)如果梯形EBFD的面积为S,求S关于x的函数关系式;
(3)如果△BDF的面积为S
1
,△BDE的面积为S
2
,那么x为何值时,S
1
=2S
2
.
(2002·上海)如图,已知四边形ABCD中,BC=CD=DB,∠ADB=90°,cos∠ABD=
4
5
.
求S
△ABD
:S
△BCD
.
(2002·无锡)已知:如图,四边形ABCD中,AD⊥AB,BC⊥AB,BC=2AD,DE⊥CD交边AB于E,连接CE.
(1)求证:DE
2
=AE·CE;
(2)若△CDE与四边形ABCD的面积之比为2:5,求sin∠BCE的值.