试题
题目:
(2006·汉川市)在平面直角坐标系中,设点P到原点O的距离为ρ,OP与x轴的正方向的夹角为α,则用[ρ,α]表示点P的极坐标,显然,点P的坐标和它的极坐标存在一一对应关系,如点P的坐标(1,1)的极坐标为P[
2
,45°],则极坐标Q[2
3
,120°]的坐标为( )
A.(-
3
,3)
B.(-3,
3
)
C.(
3
,3)
D.(3,
3
)
答案
A
解:由题目的叙述可知极坐标中第一个数表示点到原点的距离,
而第二个数表示这一点与原点的连线与x轴的夹角,极坐标Q[2
3
,120°],
这一点在第二象限,则在平面直角坐标系中横坐标是:-2
3
cos60°=-
3
,
纵坐标是2
3
sin60°=3,
于是极坐标Q[2
3
,120°]的坐标为(-
3
,3).
故选A.
考点梳理
考点
分析
点评
专题
解直角三角形;点的坐标.
弄清极坐标中第一个数表示点到原点的距离,第二个数表示这一点与原点的连线与x轴的夹角,根据点Q[2
3
,120°]利用特殊角的三角函数值即可求出点Q的坐标.
本题是一个阅读理解性的问题,解决的关键是读懂题目中叙述的问题的意思,并正确转化为所学的知识.
压轴题;新定义.
找相似题
(2013·绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( )
(2002·甘肃)如图,在Rt△ABC中,∠C=90°,AC=8,∠A的平分线AD=
16
3
3
,求∠B的度数及边BC、AB的长.
(2002·金华)如图,在△ABC中,AC=15,BC=18,sinC=
4
5
,D是AC上一个动点(不运动至点A,C),过D作DE∥
BC,交AB于E,过D作DF⊥BC,垂足为F,连接BD,设CD=x.
(1)用含x的代数式分别表示DF和BF;
(2)如果梯形EBFD的面积为S,求S关于x的函数关系式;
(3)如果△BDF的面积为S
1
,△BDE的面积为S
2
,那么x为何值时,S
1
=2S
2
.
(2002·上海)如图,已知四边形ABCD中,BC=CD=DB,∠ADB=90°,cos∠ABD=
4
5
.
求S
△ABD
:S
△BCD
.
(2002·无锡)已知:如图,四边形ABCD中,AD⊥AB,BC⊥AB,BC=2AD,DE⊥CD交边AB于E,连接CE.
(1)求证:DE
2
=AE·CE;
(2)若△CDE与四边形ABCD的面积之比为2:5,求sin∠BCE的值.