试题
题目:
(2001·荆州)如图,四边形ABCD中,∠A=135°,∠B=∠D=90°,BC=2
3
,AD=2,则四边形ABCD的面积是( )
A.4
2
B.4
3
C.4
D.6
答案
C
解:如图,分别延长CD,BA交于点E.
∵∠DAB=135°,
∴∠EAD=∠C=∠E=45°,
∴BE=BC=2
3
,AD=ED=2,
∴四边形ABCD的面积=S
△EBC
-S
△ADE
=
1
2
BC·BE-
1
2
AD·DE,
=
1
2
×2
3
×2
3
-
1
2
×2×2,
=6-2,
=4.
故选C.
考点梳理
考点
分析
点评
专题
解直角三角形.
作辅作线,构造直角三角形,根据题中所给的条件,在直角三角形中解题,根据角的正弦值与三角形边的关系,可求出各边的长,然后四边形ABCD的面积.
本题通过“割补法”求图形的面积,是解决不规则图形面积问题的基本方法.
计算题.
找相似题
(2013·绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( )
(2002·甘肃)如图,在Rt△ABC中,∠C=90°,AC=8,∠A的平分线AD=
16
3
3
,求∠B的度数及边BC、AB的长.
(2002·金华)如图,在△ABC中,AC=15,BC=18,sinC=
4
5
,D是AC上一个动点(不运动至点A,C),过D作DE∥
BC,交AB于E,过D作DF⊥BC,垂足为F,连接BD,设CD=x.
(1)用含x的代数式分别表示DF和BF;
(2)如果梯形EBFD的面积为S,求S关于x的函数关系式;
(3)如果△BDF的面积为S
1
,△BDE的面积为S
2
,那么x为何值时,S
1
=2S
2
.
(2002·上海)如图,已知四边形ABCD中,BC=CD=DB,∠ADB=90°,cos∠ABD=
4
5
.
求S
△ABD
:S
△BCD
.
(2002·无锡)已知:如图,四边形ABCD中,AD⊥AB,BC⊥AB,BC=2AD,DE⊥CD交边AB于E,连接CE.
(1)求证:DE
2
=AE·CE;
(2)若△CDE与四边形ABCD的面积之比为2:5,求sin∠BCE的值.