试题
题目:
如图,在菱形ABCD中,DE⊥AB,cosA=
3
5
,则tan∠DBE=( )
A.
1
2
B.2
C.
5
2
D.
5
5
答案
B
解:设菱形ABCD的边长为5x,
∵DE⊥AB,cosA=
3
5
,
∴AE=5x×
3
5
=3x,
BE=AB-AE=5x-3x=2x,
在Rt△ADE中,根据勾股定理得,DE=
AD
2
-AE
2
=
(
5x)
2
-(3x)
2
=4x,
所以,tan∠DBE=
DE
BE
=
4x
2x
=2.
故选B.
考点梳理
考点
分析
点评
菱形的性质;解直角三角形.
设菱形ABCD的边长为5x,根据∠A的余弦求出AE,从而求出BE,再Rt△ADE中,根据勾股定理列式求出DE,然后根据正切值等于对边比邻边列式计算即可得解.
本题考查了菱形的四条边都相等的性质,解直角三角形的应用,勾股定理的应用,是基础题,设出菱形的边长求解更加简便.
找相似题
(2013·绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( )
(2002·甘肃)如图,在Rt△ABC中,∠C=90°,AC=8,∠A的平分线AD=
16
3
3
,求∠B的度数及边BC、AB的长.
(2002·金华)如图,在△ABC中,AC=15,BC=18,sinC=
4
5
,D是AC上一个动点(不运动至点A,C),过D作DE∥
BC,交AB于E,过D作DF⊥BC,垂足为F,连接BD,设CD=x.
(1)用含x的代数式分别表示DF和BF;
(2)如果梯形EBFD的面积为S,求S关于x的函数关系式;
(3)如果△BDF的面积为S
1
,△BDE的面积为S
2
,那么x为何值时,S
1
=2S
2
.
(2002·上海)如图,已知四边形ABCD中,BC=CD=DB,∠ADB=90°,cos∠ABD=
4
5
.
求S
△ABD
:S
△BCD
.
(2002·无锡)已知:如图,四边形ABCD中,AD⊥AB,BC⊥AB,BC=2AD,DE⊥CD交边AB于E,连接CE.
(1)求证:DE
2
=AE·CE;
(2)若△CDE与四边形ABCD的面积之比为2:5,求sin∠BCE的值.