试题
题目:
(2011·黔南州)在平面直角坐标系中,设点P到原点O的距离为p,OP与x轴正方向的夹角为a,则用[p,α]表示点P的极坐标,显然,点P的极坐标与它的坐标存在一一对应关系.例如:点P的坐标为(1,1),则其极坐标为[
2
,45°].若点Q的极坐标为[4,60°],则点Q的坐标为( )
A.(2,2
3
)
B.(2,-2
3
)
C.(2
3
,2)
D.(2,2)
答案
A
解:作QA⊥x轴于点A,则OQ=4,∠QOA=60°,
故OA=OQ×cos60°=2,AQ=OQ×sin60°=2
3
,
∴点Q的坐标为(2,2
3
).
故选A.
考点梳理
考点
分析
点评
专题
解直角三角形;点的坐标.
根据特殊角的三角函数值求出Q点的坐标.
解决本题的关键是理解极坐标和点坐标之间的联系,运用特殊角的三角函数值即可求解.
新定义.
找相似题
(2013·绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( )
(2002·甘肃)如图,在Rt△ABC中,∠C=90°,AC=8,∠A的平分线AD=
16
3
3
,求∠B的度数及边BC、AB的长.
(2002·金华)如图,在△ABC中,AC=15,BC=18,sinC=
4
5
,D是AC上一个动点(不运动至点A,C),过D作DE∥
BC,交AB于E,过D作DF⊥BC,垂足为F,连接BD,设CD=x.
(1)用含x的代数式分别表示DF和BF;
(2)如果梯形EBFD的面积为S,求S关于x的函数关系式;
(3)如果△BDF的面积为S
1
,△BDE的面积为S
2
,那么x为何值时,S
1
=2S
2
.
(2002·上海)如图,已知四边形ABCD中,BC=CD=DB,∠ADB=90°,cos∠ABD=
4
5
.
求S
△ABD
:S
△BCD
.
(2002·无锡)已知:如图,四边形ABCD中,AD⊥AB,BC⊥AB,BC=2AD,DE⊥CD交边AB于E,连接CE.
(1)求证:DE
2
=AE·CE;
(2)若△CDE与四边形ABCD的面积之比为2:5,求sin∠BCE的值.