试题
题目:
已知在△ABC中,AB=AC,sinB=
3
5
,且△ABC的周长为36,则此三角形的面积为( )
A.12
B.24
C.48
D.96
答案
C
解:
过A作AD⊥BC于D,
∵sinB=
3
5
=
AD
AB
,
∴设AD=3a,则AB=5a=AC,由勾股定理得:BD=4a,
∵AB=AC,AD⊥BC,
∴BD=DC=4a,
∵△ABC的周长为36,
∴5a+5a+4a+4a=36,
a=2,
∴BC=4a+4a=16,AD=3a=6,
∴△ABC的面积是
1
2
BC×AD=
1
2
×16×6=48,
故选C.
考点梳理
考点
分析
点评
解直角三角形;等腰三角形的性质.
设AD=3a,则AB=5a=AC,由勾股定理求出BD=4a,根据等腰三角形的性质得出BD=DC=4a,根据已知得出5a+5a+4a+4a=36,求出a,求出BC和AD,根据三角形的面积公式求出即可.
本题考查了解直角三角形、三角形的面积、勾股定理、等腰三角形的性质等知识点,关键是得出关于a的方程和构造直角三角形,题目具有一定的代表性,是一道比较好的题目.
找相似题
(2013·绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( )
(2002·甘肃)如图,在Rt△ABC中,∠C=90°,AC=8,∠A的平分线AD=
16
3
3
,求∠B的度数及边BC、AB的长.
(2002·金华)如图,在△ABC中,AC=15,BC=18,sinC=
4
5
,D是AC上一个动点(不运动至点A,C),过D作DE∥
BC,交AB于E,过D作DF⊥BC,垂足为F,连接BD,设CD=x.
(1)用含x的代数式分别表示DF和BF;
(2)如果梯形EBFD的面积为S,求S关于x的函数关系式;
(3)如果△BDF的面积为S
1
,△BDE的面积为S
2
,那么x为何值时,S
1
=2S
2
.
(2002·上海)如图,已知四边形ABCD中,BC=CD=DB,∠ADB=90°,cos∠ABD=
4
5
.
求S
△ABD
:S
△BCD
.
(2002·无锡)已知:如图,四边形ABCD中,AD⊥AB,BC⊥AB,BC=2AD,DE⊥CD交边AB于E,连接CE.
(1)求证:DE
2
=AE·CE;
(2)若△CDE与四边形ABCD的面积之比为2:5,求sin∠BCE的值.