试题
题目:
(2010·襄阳)在△ABC中,AB=8,∠ABC=30°,AC=5,则BC=
4
3
±3
4
3
±3
.
答案
4
3
±3
解:如图,过A作AD⊥BC(或BC的延长线)于D点.
(1)如图①,Rt△ABD中,AB=8,∠ABC=30°,
∴AD=4,BD=4
3
.
在Rt△ACD中,AC=5,AD=4,
由勾股定理,得:CD=
AC
2
-
AD
2
=3.
∴BC=CD+BD=4
3
+3;
(2)如图②,同(1)可求得:
CD=3,BD=4
3
.
则BC=BD-CD=4
3
-3.
综上,BC=4
3
±3.
故答案为:4
3
±3.
考点梳理
考点
分析
点评
专题
解直角三角形.
过A作BC的垂线,设垂足为D.首先在Rt△ABD中,求出AD的长,进而可在两个直角三角形中求出CD、BD的长;由于∠C可能是锐角也可能是钝角,因此要分类求解.
此题主要考查了解直角三角形中三角形函数定义、勾股定理的应用及分类讨论的思想.
在两个直角三角形有公共边时,先求出这条公共边是解答此类题的一般思路.
压轴题;分类讨论.
找相似题
(2013·绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( )
(2002·甘肃)如图,在Rt△ABC中,∠C=90°,AC=8,∠A的平分线AD=
16
3
3
,求∠B的度数及边BC、AB的长.
(2002·金华)如图,在△ABC中,AC=15,BC=18,sinC=
4
5
,D是AC上一个动点(不运动至点A,C),过D作DE∥
BC,交AB于E,过D作DF⊥BC,垂足为F,连接BD,设CD=x.
(1)用含x的代数式分别表示DF和BF;
(2)如果梯形EBFD的面积为S,求S关于x的函数关系式;
(3)如果△BDF的面积为S
1
,△BDE的面积为S
2
,那么x为何值时,S
1
=2S
2
.
(2002·上海)如图,已知四边形ABCD中,BC=CD=DB,∠ADB=90°,cos∠ABD=
4
5
.
求S
△ABD
:S
△BCD
.
(2002·无锡)已知:如图,四边形ABCD中,AD⊥AB,BC⊥AB,BC=2AD,DE⊥CD交边AB于E,连接CE.
(1)求证:DE
2
=AE·CE;
(2)若△CDE与四边形ABCD的面积之比为2:5,求sin∠BCE的值.