试题
题目:
(2009·江津区)等腰三角形一腰上的高与另一腰的夹角为30°,腰长为4cm,则其腰上的高为
2
3
2
3
cm.
答案
2
3
解:如图,在Rt△ABD中,∠ABD=30°,AB=4cm,
所以,BD=AB·cos30°=4×
3
2
=2
3
(cm).
故答案为:2
3
.
考点梳理
考点
分析
点评
专题
解直角三角形;等腰三角形的性质.
在等腰三角形腰上的高与另一腰构建的直角三角形中,已知了30°的特殊角,通过解直角三角形即可求出高的长度.
本题主要考查了等腰三角形的性质以及解直角三角形的应用.
压轴题.
找相似题
(2013·绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( )
(2002·甘肃)如图,在Rt△ABC中,∠C=90°,AC=8,∠A的平分线AD=
16
3
3
,求∠B的度数及边BC、AB的长.
(2002·金华)如图,在△ABC中,AC=15,BC=18,sinC=
4
5
,D是AC上一个动点(不运动至点A,C),过D作DE∥
BC,交AB于E,过D作DF⊥BC,垂足为F,连接BD,设CD=x.
(1)用含x的代数式分别表示DF和BF;
(2)如果梯形EBFD的面积为S,求S关于x的函数关系式;
(3)如果△BDF的面积为S
1
,△BDE的面积为S
2
,那么x为何值时,S
1
=2S
2
.
(2002·上海)如图,已知四边形ABCD中,BC=CD=DB,∠ADB=90°,cos∠ABD=
4
5
.
求S
△ABD
:S
△BCD
.
(2002·无锡)已知:如图,四边形ABCD中,AD⊥AB,BC⊥AB,BC=2AD,DE⊥CD交边AB于E,连接CE.
(1)求证:DE
2
=AE·CE;
(2)若△CDE与四边形ABCD的面积之比为2:5,求sin∠BCE的值.