试题
题目:
已知,如图,△ABC中,AB=AC,∠BAC=120°,AD⊥BC,DE⊥AB,垂足分别为D,E.求证:BE=3AE.
答案
证明:∵AB=AC,
∴∠B=∠C,
而∠BAC=120°,
∴∠B=30°,
∵DE⊥AB,
∴∠BED=90°,
∴tanB=tan30°=
DE
BE
=
3
3
,
∴BE=
3
DE,
∵AD⊥BC,
∴∠ADB=90°,
∴∠BAD=60°,
在Rt△ADE中,tan∠EAD=tan60°=
DE
AE
=
3
,
∴DE=
3
AE,
∴BE=
3
·
3
AE=3AE.
证明:∵AB=AC,
∴∠B=∠C,
而∠BAC=120°,
∴∠B=30°,
∵DE⊥AB,
∴∠BED=90°,
∴tanB=tan30°=
DE
BE
=
3
3
,
∴BE=
3
DE,
∵AD⊥BC,
∴∠ADB=90°,
∴∠BAD=60°,
在Rt△ADE中,tan∠EAD=tan60°=
DE
AE
=
3
,
∴DE=
3
AE,
∴BE=
3
·
3
AE=3AE.
考点梳理
考点
分析
点评
专题
解直角三角形.
根据等腰三角形的性质得∠B=30°,由于DE⊥AB,在Rt△BDE中根据正切得定义得到tanB=tan30°=
DE
BE
=
3
3
,即BE=
3
DE,同理可得到DE=
3
AE,所以BE=
3
·
3
AE=3AE.
本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了等腰三角形的性质.
证明题.
找相似题
(2013·绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( )
(2002·甘肃)如图,在Rt△ABC中,∠C=90°,AC=8,∠A的平分线AD=
16
3
3
,求∠B的度数及边BC、AB的长.
(2002·金华)如图,在△ABC中,AC=15,BC=18,sinC=
4
5
,D是AC上一个动点(不运动至点A,C),过D作DE∥
BC,交AB于E,过D作DF⊥BC,垂足为F,连接BD,设CD=x.
(1)用含x的代数式分别表示DF和BF;
(2)如果梯形EBFD的面积为S,求S关于x的函数关系式;
(3)如果△BDF的面积为S
1
,△BDE的面积为S
2
,那么x为何值时,S
1
=2S
2
.
(2002·上海)如图,已知四边形ABCD中,BC=CD=DB,∠ADB=90°,cos∠ABD=
4
5
.
求S
△ABD
:S
△BCD
.
(2002·无锡)已知:如图,四边形ABCD中,AD⊥AB,BC⊥AB,BC=2AD,DE⊥CD交边AB于E,连接CE.
(1)求证:DE
2
=AE·CE;
(2)若△CDE与四边形ABCD的面积之比为2:5,求sin∠BCE的值.