试题
题目:
如图,在矩形ABCD中,E、F、G、H分别为AB、BC、CD、DA的中点,若tan∠AEH=
4
3
,四边形EFGH的周长为60cm,则矩形ABCD的周长为
84
84
cm.
答案
84
解;∵连接AC,BD,
∵E、F、G、H分别为AB、BC、CD、DA的中点,
∴EH=
1
2
BD,FG=
1
2
BD,EF=
1
2
AC,HG=
1
2
AC,
∵ABCD是矩形,
∴AC=BD,
∴EF=FG=GH=HE,
∴四边形EFGH是菱形,
∵四边形EFGH的周长为60cm,
∴EH=15,
∵tan∠AEH=
4
3
,
∴AH=12,AE=9,
∴AD=24,AB=18.
∴矩形ABCD的周长为:(24+18)×2=84cm.
故答案为:84.
考点梳理
考点
分析
点评
矩形的性质;三角形中位线定理;解直角三角形.
首先利用三角形的中位线定理证明EH=
1
2
BD,FG=
1
2
BD,EF=
1
2
AC,HG=
1
2
AC,再根据矩形的性质得到;AC=BD,从而得到四边形EFGH是菱形,再根据菱形的性质求出菱形的边长,进而得到:AE,AH的长度,从而得到答案.
此题主要考查了三角形中位线定理,矩形的性质,菱形的判定与性质,解题的关键是根据条件证出四边形EFGH是菱形,得到EH的长度.
找相似题
(2013·绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( )
(2002·甘肃)如图,在Rt△ABC中,∠C=90°,AC=8,∠A的平分线AD=
16
3
3
,求∠B的度数及边BC、AB的长.
(2002·金华)如图,在△ABC中,AC=15,BC=18,sinC=
4
5
,D是AC上一个动点(不运动至点A,C),过D作DE∥
BC,交AB于E,过D作DF⊥BC,垂足为F,连接BD,设CD=x.
(1)用含x的代数式分别表示DF和BF;
(2)如果梯形EBFD的面积为S,求S关于x的函数关系式;
(3)如果△BDF的面积为S
1
,△BDE的面积为S
2
,那么x为何值时,S
1
=2S
2
.
(2002·上海)如图,已知四边形ABCD中,BC=CD=DB,∠ADB=90°,cos∠ABD=
4
5
.
求S
△ABD
:S
△BCD
.
(2002·无锡)已知:如图,四边形ABCD中,AD⊥AB,BC⊥AB,BC=2AD,DE⊥CD交边AB于E,连接CE.
(1)求证:DE
2
=AE·CE;
(2)若△CDE与四边形ABCD的面积之比为2:5,求sin∠BCE的值.