试题
题目:
如图,已知在△ABC中,∠A=75°,∠B=45°,AC=10,则△ABC的面积为
25
3
+75
2
25
3
+75
2
.(结果保留根号).
答案
25
3
+75
2
解:如图:
过点A作AD⊥BC于点D,
则∠BAD=45°,∠CAD=30°,∠C=60°.
在直角△ACD中,CD=AC·cosC=10×
1
2
=5.
AD=AC·sinC=10×
3
2
=5
3
.
∵△ABD是等腰直角三角形,
∴BD=5
3
.
∴S
△ABC
=
1
2
BC·AD=
1
2
(5
3
+5)×5
3
=
25
3
+75
2
.
故答案为:
25
3
+75
2
.
考点梳理
考点
分析
点评
专题
解直角三角形;锐角三角函数的定义.
过点A作BC边的垂线AD,得到两个直角三角形,根据锐角三角函数的定义,求出AD和BC的长,再计算出三角形的面积.
本题考查的是解直角三角形,过点A作BC的垂线,把△ABC分成两个直角三角形,解这两个直角三角形,求出BC和AD的长,然后用三角形的面积公式求出三角形的面积.
计算题.
找相似题
(2013·绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( )
(2002·甘肃)如图,在Rt△ABC中,∠C=90°,AC=8,∠A的平分线AD=
16
3
3
,求∠B的度数及边BC、AB的长.
(2002·金华)如图,在△ABC中,AC=15,BC=18,sinC=
4
5
,D是AC上一个动点(不运动至点A,C),过D作DE∥
BC,交AB于E,过D作DF⊥BC,垂足为F,连接BD,设CD=x.
(1)用含x的代数式分别表示DF和BF;
(2)如果梯形EBFD的面积为S,求S关于x的函数关系式;
(3)如果△BDF的面积为S
1
,△BDE的面积为S
2
,那么x为何值时,S
1
=2S
2
.
(2002·上海)如图,已知四边形ABCD中,BC=CD=DB,∠ADB=90°,cos∠ABD=
4
5
.
求S
△ABD
:S
△BCD
.
(2002·无锡)已知:如图,四边形ABCD中,AD⊥AB,BC⊥AB,BC=2AD,DE⊥CD交边AB于E,连接CE.
(1)求证:DE
2
=AE·CE;
(2)若△CDE与四边形ABCD的面积之比为2:5,求sin∠BCE的值.