试题
题目:
(2008·锡林郭勒盟)如图,在梯形ABCD中,AD∥BC,AB=DC=AD,∠C=60°,AE⊥BD于E,AE=1.求梯形ABCD的高.
答案
解:∵AD∥BC,
∴∠2=∠3
又AB=AD,
∴∠1=∠3
∠ABC=∠C=60°
∴∠1=∠2=30°(2分)
在Rt△ABE中,AE=1,∠1=30°,
∴AB=2(4分)
作AF⊥BC垂足为F,
在Rt△ABF中,AF=AB·sin∠ABC=AB·sin60°=2×
3
2
=
3
∴梯形ABCD的高为
3
.(6分)
解:∵AD∥BC,
∴∠2=∠3
又AB=AD,
∴∠1=∠3
∠ABC=∠C=60°
∴∠1=∠2=30°(2分)
在Rt△ABE中,AE=1,∠1=30°,
∴AB=2(4分)
作AF⊥BC垂足为F,
在Rt△ABF中,AF=AB·sin∠ABC=AB·sin60°=2×
3
2
=
3
∴梯形ABCD的高为
3
.(6分)
考点梳理
考点
分析
点评
专题
梯形;解直角三角形.
如图,过A作AF⊥BC垂足为F,把梯形的问题转化到直角三角形中;然后再利用∠C=60°这个条件根据直角三角形的性质解题.
此题考查了梯形的常用辅助线,也考查了直角三角形的性质:在直角三角形中30°的角所对的直角边等于斜边的一半.
计算题;压轴题.
找相似题
(2013·绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( )
(2002·甘肃)如图,在Rt△ABC中,∠C=90°,AC=8,∠A的平分线AD=
16
3
3
,求∠B的度数及边BC、AB的长.
(2002·金华)如图,在△ABC中,AC=15,BC=18,sinC=
4
5
,D是AC上一个动点(不运动至点A,C),过D作DE∥
BC,交AB于E,过D作DF⊥BC,垂足为F,连接BD,设CD=x.
(1)用含x的代数式分别表示DF和BF;
(2)如果梯形EBFD的面积为S,求S关于x的函数关系式;
(3)如果△BDF的面积为S
1
,△BDE的面积为S
2
,那么x为何值时,S
1
=2S
2
.
(2002·上海)如图,已知四边形ABCD中,BC=CD=DB,∠ADB=90°,cos∠ABD=
4
5
.
求S
△ABD
:S
△BCD
.
(2002·无锡)已知:如图,四边形ABCD中,AD⊥AB,BC⊥AB,BC=2AD,DE⊥CD交边AB于E,连接CE.
(1)求证:DE
2
=AE·CE;
(2)若△CDE与四边形ABCD的面积之比为2:5,求sin∠BCE的值.