试题
题目:
(2013·南通一模)已知△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D为BC边上一点.
(1)求证:△ACE≌△ABD;
(2)若AC=2
2
,CD=1,求ED的长.
答案
(1)证明:
∵△ABC是等腰直角三角形
∴AB=AC,∠BAC=90°
同理AB=AE,∠CAE=90°
∵∠BAC=∠CAE=90°
∴∠EAC+∠CAD=∠BAD+∠CAD=90°
∴∠EAC=∠DAB
在△ACE与△ABD中,
AE=AD
∠EAC=∠DAB
AC=AB
∴△ACE≌△ABD(SAS)
(2)解:在△ABC中
BC=
AC
sinB
=
2
2
sin45°
=4
∴BD=BC-CD=4-1=3
∵△ABC是等腰直角三角形
∴∠ACB=∠B=45°
∵△ACE≌△ABD
∴∠ACE=∠B=45°,EC=DB=3
∵∠ECD=∠ACE+∠ACB=90°
∴△ECD是直角三角形
∴ED=
E
C
2
+C
D
2
=
10
.
(1)证明:
∵△ABC是等腰直角三角形
∴AB=AC,∠BAC=90°
同理AB=AE,∠CAE=90°
∵∠BAC=∠CAE=90°
∴∠EAC+∠CAD=∠BAD+∠CAD=90°
∴∠EAC=∠DAB
在△ACE与△ABD中,
AE=AD
∠EAC=∠DAB
AC=AB
∴△ACE≌△ABD(SAS)
(2)解:在△ABC中
BC=
AC
sinB
=
2
2
sin45°
=4
∴BD=BC-CD=4-1=3
∵△ABC是等腰直角三角形
∴∠ACB=∠B=45°
∵△ACE≌△ABD
∴∠ACE=∠B=45°,EC=DB=3
∵∠ECD=∠ACE+∠ACB=90°
∴△ECD是直角三角形
∴ED=
E
C
2
+C
D
2
=
10
.
考点梳理
考点
分析
点评
全等三角形的判定与性质;勾股定理;等腰直角三角形;解直角三角形.
(1)利用△ABC和△ADE均为等腰直角三角形,得到两条对应边相等,然后得到其夹角相等即可证得两三角形全等;
(2)解:在△ABC中求得BC=2、BD=BC-CD=4-1=3,再根据△ACE≌△ABD得到∠ACE=∠B=45°,最后得到∠ECD=∠ACE+∠ACB=90°,利用勾股定理求得ED长即可
本题考查了全等三角形的判定与性质及勾股定理等知识,全等三角形是一种非常重要的工具,应该利用好.
找相似题
(2013·绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( )
(2002·甘肃)如图,在Rt△ABC中,∠C=90°,AC=8,∠A的平分线AD=
16
3
3
,求∠B的度数及边BC、AB的长.
(2002·金华)如图,在△ABC中,AC=15,BC=18,sinC=
4
5
,D是AC上一个动点(不运动至点A,C),过D作DE∥
BC,交AB于E,过D作DF⊥BC,垂足为F,连接BD,设CD=x.
(1)用含x的代数式分别表示DF和BF;
(2)如果梯形EBFD的面积为S,求S关于x的函数关系式;
(3)如果△BDF的面积为S
1
,△BDE的面积为S
2
,那么x为何值时,S
1
=2S
2
.
(2002·上海)如图,已知四边形ABCD中,BC=CD=DB,∠ADB=90°,cos∠ABD=
4
5
.
求S
△ABD
:S
△BCD
.
(2002·无锡)已知:如图,四边形ABCD中,AD⊥AB,BC⊥AB,BC=2AD,DE⊥CD交边AB于E,连接CE.
(1)求证:DE
2
=AE·CE;
(2)若△CDE与四边形ABCD的面积之比为2:5,求sin∠BCE的值.